merve HF staff commited on
Commit
18f6be3
1 Parent(s): b1c0188

Upload . with huggingface_hub

Browse files
Files changed (4) hide show
  1. README.md +234 -0
  2. config.json +195 -0
  3. confusion_matrix.png +0 -0
  4. model.pkl +3 -0
README.md ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_file: model.pkl
8
+ widget:
9
+ structuredData:
10
+ area_mean:
11
+ - 407.4
12
+ - 1335.0
13
+ - 428.0
14
+ area_se:
15
+ - 26.99
16
+ - 77.02
17
+ - 17.12
18
+ area_worst:
19
+ - 508.9
20
+ - 1946.0
21
+ - 546.3
22
+ compactness_mean:
23
+ - 0.05991
24
+ - 0.1076
25
+ - 0.069
26
+ compactness_se:
27
+ - 0.01065
28
+ - 0.01895
29
+ - 0.01727
30
+ compactness_worst:
31
+ - 0.1049
32
+ - 0.3055
33
+ - 0.188
34
+ concave points_mean:
35
+ - 0.02069
36
+ - 0.08941
37
+ - 0.01393
38
+ concave points_se:
39
+ - 0.009175
40
+ - 0.01232
41
+ - 0.006747
42
+ concave points_worst:
43
+ - 0.06544
44
+ - 0.2112
45
+ - 0.06913
46
+ concavity_mean:
47
+ - 0.02638
48
+ - 0.1527
49
+ - 0.02669
50
+ concavity_se:
51
+ - 0.01245
52
+ - 0.02681
53
+ - 0.02045
54
+ concavity_worst:
55
+ - 0.08105
56
+ - 0.4159
57
+ - 0.1471
58
+ fractal_dimension_mean:
59
+ - 0.05934
60
+ - 0.05478
61
+ - 0.06057
62
+ fractal_dimension_se:
63
+ - 0.001461
64
+ - 0.001711
65
+ - 0.002922
66
+ fractal_dimension_worst:
67
+ - 0.06487
68
+ - 0.07055
69
+ - 0.07993
70
+ perimeter_mean:
71
+ - 73.28
72
+ - 134.8
73
+ - 75.51
74
+ perimeter_se:
75
+ - 2.684
76
+ - 4.119
77
+ - 1.444
78
+ perimeter_worst:
79
+ - 83.12
80
+ - 166.8
81
+ - 85.22
82
+ radius_mean:
83
+ - 11.5
84
+ - 20.64
85
+ - 11.84
86
+ radius_se:
87
+ - 0.3927
88
+ - 0.6137
89
+ - 0.2222
90
+ radius_worst:
91
+ - 12.97
92
+ - 25.37
93
+ - 13.3
94
+ smoothness_mean:
95
+ - 0.09345
96
+ - 0.09446
97
+ - 0.08871
98
+ smoothness_se:
99
+ - 0.00638
100
+ - 0.006211
101
+ - 0.005517
102
+ smoothness_worst:
103
+ - 0.1183
104
+ - 0.1562
105
+ - 0.128
106
+ symmetry_mean:
107
+ - 0.1834
108
+ - 0.1571
109
+ - 0.1533
110
+ symmetry_se:
111
+ - 0.02292
112
+ - 0.01276
113
+ - 0.01616
114
+ symmetry_worst:
115
+ - 0.274
116
+ - 0.2689
117
+ - 0.2535
118
+ texture_mean:
119
+ - 18.45
120
+ - 17.35
121
+ - 18.94
122
+ texture_se:
123
+ - 0.8429
124
+ - 0.6575
125
+ - 0.8652
126
+ texture_worst:
127
+ - 22.46
128
+ - 23.17
129
+ - 24.99
130
+ ---
131
+
132
+ # Model description
133
+
134
+ This is a Logistic Regression trained on breast cancer dataset.
135
+
136
+ ## Intended uses & limitations
137
+
138
+ This model is trained for educational purposes.
139
+
140
+ ## Training Procedure
141
+
142
+ ### Hyperparameters
143
+
144
+ The model is trained with below hyperparameters.
145
+
146
+ <details>
147
+ <summary> Click to expand </summary>
148
+
149
+ | Hyperparameter | Value |
150
+ |--------------------------|-----------------------------------------------------------------|
151
+ | memory | |
152
+ | steps | [('scaler', StandardScaler()), ('model', LogisticRegression())] |
153
+ | verbose | False |
154
+ | scaler | StandardScaler() |
155
+ | model | LogisticRegression() |
156
+ | scaler__copy | True |
157
+ | scaler__with_mean | True |
158
+ | scaler__with_std | True |
159
+ | model__C | 1.0 |
160
+ | model__class_weight | |
161
+ | model__dual | False |
162
+ | model__fit_intercept | True |
163
+ | model__intercept_scaling | 1 |
164
+ | model__l1_ratio | |
165
+ | model__max_iter | 100 |
166
+ | model__multi_class | auto |
167
+ | model__n_jobs | |
168
+ | model__penalty | l2 |
169
+ | model__random_state | |
170
+ | model__solver | lbfgs |
171
+ | model__tol | 0.0001 |
172
+ | model__verbose | 0 |
173
+ | model__warm_start | False |
174
+
175
+ </details>
176
+
177
+ ### Model Plot
178
+
179
+ The model plot is below.
180
+
181
+ <style>#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 {color: black;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 pre{padding: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable {background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-item {z-index: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:only-child::after {width: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-text-repr-fallback {display: none;}</style><div id="sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, StandardScaler()), (&#x27;model&#x27;, LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="76a688ab-e260-4cf7-a9f2-bf77900be27c" type="checkbox" ><label for="76a688ab-e260-4cf7-a9f2-bf77900be27c" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;scaler&#x27;, StandardScaler()), (&#x27;model&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6a4fcd10-6b63-40a6-a848-13717b9f7c82" type="checkbox" ><label for="6a4fcd10-6b63-40a6-a848-13717b9f7c82" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="974bd93d-19db-4a61-b7ff-66d07e5bbadb" type="checkbox" ><label for="974bd93d-19db-4a61-b7ff-66d07e5bbadb" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
182
+
183
+ ## Evaluation Results
184
+
185
+ You can find the details about evaluation process and the evaluation results.
186
+
187
+
188
+
189
+ | Metric | Value |
190
+ |----------|----------|
191
+ | accuracy | 0.965035 |
192
+ | f1 score | 0.965035 |
193
+
194
+ # How to Get Started with the Model
195
+
196
+ Use the code below to get started with the model.
197
+
198
+ ```python
199
+ import joblib
200
+ import json
201
+ import pandas as pd
202
+ clf = joblib.load(model.pkl)
203
+ with open("config.json") as f:
204
+ config = json.load(f)
205
+ clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
206
+ ```
207
+
208
+
209
+ # Model Card Authors
210
+
211
+ This model card is written by following authors:
212
+
213
+ [More Information Needed]
214
+
215
+ # Model Card Contact
216
+
217
+ You can contact the model card authors through following channels:
218
+ [More Information Needed]
219
+
220
+ # Citation
221
+
222
+ Below you can find information related to citation.
223
+
224
+ **BibTeX:**
225
+ ```
226
+ [More Information Needed]
227
+ ```
228
+
229
+
230
+ # Additional Content
231
+
232
+ ## Confusion Matrix
233
+
234
+ ![Confusion Matrix](confusion_matrix.png)
config.json ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "radius_mean",
5
+ "texture_mean",
6
+ "perimeter_mean",
7
+ "area_mean",
8
+ "smoothness_mean",
9
+ "compactness_mean",
10
+ "concavity_mean",
11
+ "concave points_mean",
12
+ "symmetry_mean",
13
+ "fractal_dimension_mean",
14
+ "radius_se",
15
+ "texture_se",
16
+ "perimeter_se",
17
+ "area_se",
18
+ "smoothness_se",
19
+ "compactness_se",
20
+ "concavity_se",
21
+ "concave points_se",
22
+ "symmetry_se",
23
+ "fractal_dimension_se",
24
+ "radius_worst",
25
+ "texture_worst",
26
+ "perimeter_worst",
27
+ "area_worst",
28
+ "smoothness_worst",
29
+ "compactness_worst",
30
+ "concavity_worst",
31
+ "concave points_worst",
32
+ "symmetry_worst",
33
+ "fractal_dimension_worst"
34
+ ],
35
+ "environment": [
36
+ "scikit-learn"
37
+ ],
38
+ "example_input": {
39
+ "area_mean": [
40
+ 407.4,
41
+ 1335.0,
42
+ 428.0
43
+ ],
44
+ "area_se": [
45
+ 26.99,
46
+ 77.02,
47
+ 17.12
48
+ ],
49
+ "area_worst": [
50
+ 508.9,
51
+ 1946.0,
52
+ 546.3
53
+ ],
54
+ "compactness_mean": [
55
+ 0.05991,
56
+ 0.1076,
57
+ 0.069
58
+ ],
59
+ "compactness_se": [
60
+ 0.01065,
61
+ 0.01895,
62
+ 0.01727
63
+ ],
64
+ "compactness_worst": [
65
+ 0.1049,
66
+ 0.3055,
67
+ 0.188
68
+ ],
69
+ "concave points_mean": [
70
+ 0.02069,
71
+ 0.08941,
72
+ 0.01393
73
+ ],
74
+ "concave points_se": [
75
+ 0.009175,
76
+ 0.01232,
77
+ 0.006747
78
+ ],
79
+ "concave points_worst": [
80
+ 0.06544,
81
+ 0.2112,
82
+ 0.06913
83
+ ],
84
+ "concavity_mean": [
85
+ 0.02638,
86
+ 0.1527,
87
+ 0.02669
88
+ ],
89
+ "concavity_se": [
90
+ 0.01245,
91
+ 0.02681,
92
+ 0.02045
93
+ ],
94
+ "concavity_worst": [
95
+ 0.08105,
96
+ 0.4159,
97
+ 0.1471
98
+ ],
99
+ "fractal_dimension_mean": [
100
+ 0.05934,
101
+ 0.05478,
102
+ 0.06057
103
+ ],
104
+ "fractal_dimension_se": [
105
+ 0.001461,
106
+ 0.001711,
107
+ 0.002922
108
+ ],
109
+ "fractal_dimension_worst": [
110
+ 0.06487,
111
+ 0.07055,
112
+ 0.07993
113
+ ],
114
+ "perimeter_mean": [
115
+ 73.28,
116
+ 134.8,
117
+ 75.51
118
+ ],
119
+ "perimeter_se": [
120
+ 2.684,
121
+ 4.119,
122
+ 1.444
123
+ ],
124
+ "perimeter_worst": [
125
+ 83.12,
126
+ 166.8,
127
+ 85.22
128
+ ],
129
+ "radius_mean": [
130
+ 11.5,
131
+ 20.64,
132
+ 11.84
133
+ ],
134
+ "radius_se": [
135
+ 0.3927,
136
+ 0.6137,
137
+ 0.2222
138
+ ],
139
+ "radius_worst": [
140
+ 12.97,
141
+ 25.37,
142
+ 13.3
143
+ ],
144
+ "smoothness_mean": [
145
+ 0.09345,
146
+ 0.09446,
147
+ 0.08871
148
+ ],
149
+ "smoothness_se": [
150
+ 0.00638,
151
+ 0.006211,
152
+ 0.005517
153
+ ],
154
+ "smoothness_worst": [
155
+ 0.1183,
156
+ 0.1562,
157
+ 0.128
158
+ ],
159
+ "symmetry_mean": [
160
+ 0.1834,
161
+ 0.1571,
162
+ 0.1533
163
+ ],
164
+ "symmetry_se": [
165
+ 0.02292,
166
+ 0.01276,
167
+ 0.01616
168
+ ],
169
+ "symmetry_worst": [
170
+ 0.274,
171
+ 0.2689,
172
+ 0.2535
173
+ ],
174
+ "texture_mean": [
175
+ 18.45,
176
+ 17.35,
177
+ 18.94
178
+ ],
179
+ "texture_se": [
180
+ 0.8429,
181
+ 0.6575,
182
+ 0.8652
183
+ ],
184
+ "texture_worst": [
185
+ 22.46,
186
+ 23.17,
187
+ 24.99
188
+ ]
189
+ },
190
+ "model": {
191
+ "file": "model.pkl"
192
+ },
193
+ "task": "tabular-classification"
194
+ }
195
+ }
confusion_matrix.png ADDED
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19e7603c2a00866878c72a1d61f9adc0aaa687f0ba70be71ecdd3e7f610ae9d4
3
+ size 3374