Upload . with huggingface_hub
Browse files- README.md +234 -0
- config.json +195 -0
- confusion_matrix.png +0 -0
- model.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-classification
|
7 |
+
model_file: model.pkl
|
8 |
+
widget:
|
9 |
+
structuredData:
|
10 |
+
area_mean:
|
11 |
+
- 407.4
|
12 |
+
- 1335.0
|
13 |
+
- 428.0
|
14 |
+
area_se:
|
15 |
+
- 26.99
|
16 |
+
- 77.02
|
17 |
+
- 17.12
|
18 |
+
area_worst:
|
19 |
+
- 508.9
|
20 |
+
- 1946.0
|
21 |
+
- 546.3
|
22 |
+
compactness_mean:
|
23 |
+
- 0.05991
|
24 |
+
- 0.1076
|
25 |
+
- 0.069
|
26 |
+
compactness_se:
|
27 |
+
- 0.01065
|
28 |
+
- 0.01895
|
29 |
+
- 0.01727
|
30 |
+
compactness_worst:
|
31 |
+
- 0.1049
|
32 |
+
- 0.3055
|
33 |
+
- 0.188
|
34 |
+
concave points_mean:
|
35 |
+
- 0.02069
|
36 |
+
- 0.08941
|
37 |
+
- 0.01393
|
38 |
+
concave points_se:
|
39 |
+
- 0.009175
|
40 |
+
- 0.01232
|
41 |
+
- 0.006747
|
42 |
+
concave points_worst:
|
43 |
+
- 0.06544
|
44 |
+
- 0.2112
|
45 |
+
- 0.06913
|
46 |
+
concavity_mean:
|
47 |
+
- 0.02638
|
48 |
+
- 0.1527
|
49 |
+
- 0.02669
|
50 |
+
concavity_se:
|
51 |
+
- 0.01245
|
52 |
+
- 0.02681
|
53 |
+
- 0.02045
|
54 |
+
concavity_worst:
|
55 |
+
- 0.08105
|
56 |
+
- 0.4159
|
57 |
+
- 0.1471
|
58 |
+
fractal_dimension_mean:
|
59 |
+
- 0.05934
|
60 |
+
- 0.05478
|
61 |
+
- 0.06057
|
62 |
+
fractal_dimension_se:
|
63 |
+
- 0.001461
|
64 |
+
- 0.001711
|
65 |
+
- 0.002922
|
66 |
+
fractal_dimension_worst:
|
67 |
+
- 0.06487
|
68 |
+
- 0.07055
|
69 |
+
- 0.07993
|
70 |
+
perimeter_mean:
|
71 |
+
- 73.28
|
72 |
+
- 134.8
|
73 |
+
- 75.51
|
74 |
+
perimeter_se:
|
75 |
+
- 2.684
|
76 |
+
- 4.119
|
77 |
+
- 1.444
|
78 |
+
perimeter_worst:
|
79 |
+
- 83.12
|
80 |
+
- 166.8
|
81 |
+
- 85.22
|
82 |
+
radius_mean:
|
83 |
+
- 11.5
|
84 |
+
- 20.64
|
85 |
+
- 11.84
|
86 |
+
radius_se:
|
87 |
+
- 0.3927
|
88 |
+
- 0.6137
|
89 |
+
- 0.2222
|
90 |
+
radius_worst:
|
91 |
+
- 12.97
|
92 |
+
- 25.37
|
93 |
+
- 13.3
|
94 |
+
smoothness_mean:
|
95 |
+
- 0.09345
|
96 |
+
- 0.09446
|
97 |
+
- 0.08871
|
98 |
+
smoothness_se:
|
99 |
+
- 0.00638
|
100 |
+
- 0.006211
|
101 |
+
- 0.005517
|
102 |
+
smoothness_worst:
|
103 |
+
- 0.1183
|
104 |
+
- 0.1562
|
105 |
+
- 0.128
|
106 |
+
symmetry_mean:
|
107 |
+
- 0.1834
|
108 |
+
- 0.1571
|
109 |
+
- 0.1533
|
110 |
+
symmetry_se:
|
111 |
+
- 0.02292
|
112 |
+
- 0.01276
|
113 |
+
- 0.01616
|
114 |
+
symmetry_worst:
|
115 |
+
- 0.274
|
116 |
+
- 0.2689
|
117 |
+
- 0.2535
|
118 |
+
texture_mean:
|
119 |
+
- 18.45
|
120 |
+
- 17.35
|
121 |
+
- 18.94
|
122 |
+
texture_se:
|
123 |
+
- 0.8429
|
124 |
+
- 0.6575
|
125 |
+
- 0.8652
|
126 |
+
texture_worst:
|
127 |
+
- 22.46
|
128 |
+
- 23.17
|
129 |
+
- 24.99
|
130 |
+
---
|
131 |
+
|
132 |
+
# Model description
|
133 |
+
|
134 |
+
This is a Logistic Regression trained on breast cancer dataset.
|
135 |
+
|
136 |
+
## Intended uses & limitations
|
137 |
+
|
138 |
+
This model is trained for educational purposes.
|
139 |
+
|
140 |
+
## Training Procedure
|
141 |
+
|
142 |
+
### Hyperparameters
|
143 |
+
|
144 |
+
The model is trained with below hyperparameters.
|
145 |
+
|
146 |
+
<details>
|
147 |
+
<summary> Click to expand </summary>
|
148 |
+
|
149 |
+
| Hyperparameter | Value |
|
150 |
+
|--------------------------|-----------------------------------------------------------------|
|
151 |
+
| memory | |
|
152 |
+
| steps | [('scaler', StandardScaler()), ('model', LogisticRegression())] |
|
153 |
+
| verbose | False |
|
154 |
+
| scaler | StandardScaler() |
|
155 |
+
| model | LogisticRegression() |
|
156 |
+
| scaler__copy | True |
|
157 |
+
| scaler__with_mean | True |
|
158 |
+
| scaler__with_std | True |
|
159 |
+
| model__C | 1.0 |
|
160 |
+
| model__class_weight | |
|
161 |
+
| model__dual | False |
|
162 |
+
| model__fit_intercept | True |
|
163 |
+
| model__intercept_scaling | 1 |
|
164 |
+
| model__l1_ratio | |
|
165 |
+
| model__max_iter | 100 |
|
166 |
+
| model__multi_class | auto |
|
167 |
+
| model__n_jobs | |
|
168 |
+
| model__penalty | l2 |
|
169 |
+
| model__random_state | |
|
170 |
+
| model__solver | lbfgs |
|
171 |
+
| model__tol | 0.0001 |
|
172 |
+
| model__verbose | 0 |
|
173 |
+
| model__warm_start | False |
|
174 |
+
|
175 |
+
</details>
|
176 |
+
|
177 |
+
### Model Plot
|
178 |
+
|
179 |
+
The model plot is below.
|
180 |
+
|
181 |
+
<style>#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 {color: black;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 pre{padding: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable {background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-estimator:hover {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-item {z-index: 1;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-parallel-item:only-child::after {width: 0;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152 div.sk-text-repr-fallback {display: none;}</style><div id="sk-5b6643ea-0cef-4d0c-8389-2cf071bf6152" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('scaler', StandardScaler()), ('model', LogisticRegression())])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="76a688ab-e260-4cf7-a9f2-bf77900be27c" type="checkbox" ><label for="76a688ab-e260-4cf7-a9f2-bf77900be27c" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[('scaler', StandardScaler()), ('model', LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="6a4fcd10-6b63-40a6-a848-13717b9f7c82" type="checkbox" ><label for="6a4fcd10-6b63-40a6-a848-13717b9f7c82" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="974bd93d-19db-4a61-b7ff-66d07e5bbadb" type="checkbox" ><label for="974bd93d-19db-4a61-b7ff-66d07e5bbadb" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
|
182 |
+
|
183 |
+
## Evaluation Results
|
184 |
+
|
185 |
+
You can find the details about evaluation process and the evaluation results.
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
| Metric | Value |
|
190 |
+
|----------|----------|
|
191 |
+
| accuracy | 0.965035 |
|
192 |
+
| f1 score | 0.965035 |
|
193 |
+
|
194 |
+
# How to Get Started with the Model
|
195 |
+
|
196 |
+
Use the code below to get started with the model.
|
197 |
+
|
198 |
+
```python
|
199 |
+
import joblib
|
200 |
+
import json
|
201 |
+
import pandas as pd
|
202 |
+
clf = joblib.load(model.pkl)
|
203 |
+
with open("config.json") as f:
|
204 |
+
config = json.load(f)
|
205 |
+
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
|
206 |
+
```
|
207 |
+
|
208 |
+
|
209 |
+
# Model Card Authors
|
210 |
+
|
211 |
+
This model card is written by following authors:
|
212 |
+
|
213 |
+
[More Information Needed]
|
214 |
+
|
215 |
+
# Model Card Contact
|
216 |
+
|
217 |
+
You can contact the model card authors through following channels:
|
218 |
+
[More Information Needed]
|
219 |
+
|
220 |
+
# Citation
|
221 |
+
|
222 |
+
Below you can find information related to citation.
|
223 |
+
|
224 |
+
**BibTeX:**
|
225 |
+
```
|
226 |
+
[More Information Needed]
|
227 |
+
```
|
228 |
+
|
229 |
+
|
230 |
+
# Additional Content
|
231 |
+
|
232 |
+
## Confusion Matrix
|
233 |
+
|
234 |
+
![Confusion Matrix](confusion_matrix.png)
|
config.json
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"radius_mean",
|
5 |
+
"texture_mean",
|
6 |
+
"perimeter_mean",
|
7 |
+
"area_mean",
|
8 |
+
"smoothness_mean",
|
9 |
+
"compactness_mean",
|
10 |
+
"concavity_mean",
|
11 |
+
"concave points_mean",
|
12 |
+
"symmetry_mean",
|
13 |
+
"fractal_dimension_mean",
|
14 |
+
"radius_se",
|
15 |
+
"texture_se",
|
16 |
+
"perimeter_se",
|
17 |
+
"area_se",
|
18 |
+
"smoothness_se",
|
19 |
+
"compactness_se",
|
20 |
+
"concavity_se",
|
21 |
+
"concave points_se",
|
22 |
+
"symmetry_se",
|
23 |
+
"fractal_dimension_se",
|
24 |
+
"radius_worst",
|
25 |
+
"texture_worst",
|
26 |
+
"perimeter_worst",
|
27 |
+
"area_worst",
|
28 |
+
"smoothness_worst",
|
29 |
+
"compactness_worst",
|
30 |
+
"concavity_worst",
|
31 |
+
"concave points_worst",
|
32 |
+
"symmetry_worst",
|
33 |
+
"fractal_dimension_worst"
|
34 |
+
],
|
35 |
+
"environment": [
|
36 |
+
"scikit-learn"
|
37 |
+
],
|
38 |
+
"example_input": {
|
39 |
+
"area_mean": [
|
40 |
+
407.4,
|
41 |
+
1335.0,
|
42 |
+
428.0
|
43 |
+
],
|
44 |
+
"area_se": [
|
45 |
+
26.99,
|
46 |
+
77.02,
|
47 |
+
17.12
|
48 |
+
],
|
49 |
+
"area_worst": [
|
50 |
+
508.9,
|
51 |
+
1946.0,
|
52 |
+
546.3
|
53 |
+
],
|
54 |
+
"compactness_mean": [
|
55 |
+
0.05991,
|
56 |
+
0.1076,
|
57 |
+
0.069
|
58 |
+
],
|
59 |
+
"compactness_se": [
|
60 |
+
0.01065,
|
61 |
+
0.01895,
|
62 |
+
0.01727
|
63 |
+
],
|
64 |
+
"compactness_worst": [
|
65 |
+
0.1049,
|
66 |
+
0.3055,
|
67 |
+
0.188
|
68 |
+
],
|
69 |
+
"concave points_mean": [
|
70 |
+
0.02069,
|
71 |
+
0.08941,
|
72 |
+
0.01393
|
73 |
+
],
|
74 |
+
"concave points_se": [
|
75 |
+
0.009175,
|
76 |
+
0.01232,
|
77 |
+
0.006747
|
78 |
+
],
|
79 |
+
"concave points_worst": [
|
80 |
+
0.06544,
|
81 |
+
0.2112,
|
82 |
+
0.06913
|
83 |
+
],
|
84 |
+
"concavity_mean": [
|
85 |
+
0.02638,
|
86 |
+
0.1527,
|
87 |
+
0.02669
|
88 |
+
],
|
89 |
+
"concavity_se": [
|
90 |
+
0.01245,
|
91 |
+
0.02681,
|
92 |
+
0.02045
|
93 |
+
],
|
94 |
+
"concavity_worst": [
|
95 |
+
0.08105,
|
96 |
+
0.4159,
|
97 |
+
0.1471
|
98 |
+
],
|
99 |
+
"fractal_dimension_mean": [
|
100 |
+
0.05934,
|
101 |
+
0.05478,
|
102 |
+
0.06057
|
103 |
+
],
|
104 |
+
"fractal_dimension_se": [
|
105 |
+
0.001461,
|
106 |
+
0.001711,
|
107 |
+
0.002922
|
108 |
+
],
|
109 |
+
"fractal_dimension_worst": [
|
110 |
+
0.06487,
|
111 |
+
0.07055,
|
112 |
+
0.07993
|
113 |
+
],
|
114 |
+
"perimeter_mean": [
|
115 |
+
73.28,
|
116 |
+
134.8,
|
117 |
+
75.51
|
118 |
+
],
|
119 |
+
"perimeter_se": [
|
120 |
+
2.684,
|
121 |
+
4.119,
|
122 |
+
1.444
|
123 |
+
],
|
124 |
+
"perimeter_worst": [
|
125 |
+
83.12,
|
126 |
+
166.8,
|
127 |
+
85.22
|
128 |
+
],
|
129 |
+
"radius_mean": [
|
130 |
+
11.5,
|
131 |
+
20.64,
|
132 |
+
11.84
|
133 |
+
],
|
134 |
+
"radius_se": [
|
135 |
+
0.3927,
|
136 |
+
0.6137,
|
137 |
+
0.2222
|
138 |
+
],
|
139 |
+
"radius_worst": [
|
140 |
+
12.97,
|
141 |
+
25.37,
|
142 |
+
13.3
|
143 |
+
],
|
144 |
+
"smoothness_mean": [
|
145 |
+
0.09345,
|
146 |
+
0.09446,
|
147 |
+
0.08871
|
148 |
+
],
|
149 |
+
"smoothness_se": [
|
150 |
+
0.00638,
|
151 |
+
0.006211,
|
152 |
+
0.005517
|
153 |
+
],
|
154 |
+
"smoothness_worst": [
|
155 |
+
0.1183,
|
156 |
+
0.1562,
|
157 |
+
0.128
|
158 |
+
],
|
159 |
+
"symmetry_mean": [
|
160 |
+
0.1834,
|
161 |
+
0.1571,
|
162 |
+
0.1533
|
163 |
+
],
|
164 |
+
"symmetry_se": [
|
165 |
+
0.02292,
|
166 |
+
0.01276,
|
167 |
+
0.01616
|
168 |
+
],
|
169 |
+
"symmetry_worst": [
|
170 |
+
0.274,
|
171 |
+
0.2689,
|
172 |
+
0.2535
|
173 |
+
],
|
174 |
+
"texture_mean": [
|
175 |
+
18.45,
|
176 |
+
17.35,
|
177 |
+
18.94
|
178 |
+
],
|
179 |
+
"texture_se": [
|
180 |
+
0.8429,
|
181 |
+
0.6575,
|
182 |
+
0.8652
|
183 |
+
],
|
184 |
+
"texture_worst": [
|
185 |
+
22.46,
|
186 |
+
23.17,
|
187 |
+
24.99
|
188 |
+
]
|
189 |
+
},
|
190 |
+
"model": {
|
191 |
+
"file": "model.pkl"
|
192 |
+
},
|
193 |
+
"task": "tabular-classification"
|
194 |
+
}
|
195 |
+
}
|
confusion_matrix.png
ADDED
model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19e7603c2a00866878c72a1d61f9adc0aaa687f0ba70be71ecdd3e7f610ae9d4
|
3 |
+
size 3374
|