Initial commit
Browse files- .gitattributes +2 -0
- README.md +67 -0
- args.yml +65 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-Walker2d-v3.zip +3 -0
- trpo-Walker2d-v3/_stable_baselines3_version +1 -0
- trpo-Walker2d-v3/data +102 -0
- trpo-Walker2d-v3/policy.optimizer.pth +3 -0
- trpo-Walker2d-v3/policy.pth +3 -0
- trpo-Walker2d-v3/pytorch_variables.pth +3 -0
- trpo-Walker2d-v3/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
29 |
+
vec_normalize.pkl filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2d-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 4983.79 +/- 1338.46
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: Walker2d-v3
|
20 |
+
type: Walker2d-v3
|
21 |
+
---
|
22 |
+
|
23 |
+
# **TRPO** Agent playing **Walker2d-v3**
|
24 |
+
This is a trained model of a **TRPO** agent playing **Walker2d-v3**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
26 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
27 |
+
|
28 |
+
The RL Zoo is a training framework for Stable Baselines3
|
29 |
+
reinforcement learning agents,
|
30 |
+
with hyperparameter optimization and pre-trained agents included.
|
31 |
+
|
32 |
+
## Usage (with SB3 RL Zoo)
|
33 |
+
|
34 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
35 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
36 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
37 |
+
|
38 |
+
```
|
39 |
+
# Download model and save it into the logs/ folder
|
40 |
+
python -m utils.load_from_hub --algo trpo --env Walker2d-v3 -orga sb3 -f logs/
|
41 |
+
python enjoy.py --algo trpo --env Walker2d-v3 -f logs/
|
42 |
+
```
|
43 |
+
|
44 |
+
## Training (with the RL Zoo)
|
45 |
+
```
|
46 |
+
python train.py --algo trpo --env Walker2d-v3 -f logs/
|
47 |
+
# Upload the model and generate video (when possible)
|
48 |
+
python -m utils.push_to_hub --algo trpo --env Walker2d-v3 -f logs/ -orga sb3
|
49 |
+
```
|
50 |
+
|
51 |
+
## Hyperparameters
|
52 |
+
```python
|
53 |
+
OrderedDict([('batch_size', 128),
|
54 |
+
('cg_damping', 0.1),
|
55 |
+
('cg_max_steps', 25),
|
56 |
+
('gae_lambda', 0.95),
|
57 |
+
('gamma', 0.99),
|
58 |
+
('learning_rate', 0.001),
|
59 |
+
('n_critic_updates', 20),
|
60 |
+
('n_envs', 2),
|
61 |
+
('n_steps', 1024),
|
62 |
+
('n_timesteps', 1000000.0),
|
63 |
+
('normalize', True),
|
64 |
+
('policy', 'MlpPolicy'),
|
65 |
+
('sub_sampling_factor', 1),
|
66 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
67 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - env
|
5 |
+
- Walker2d-v3
|
6 |
+
- - env_kwargs
|
7 |
+
- null
|
8 |
+
- - eval_episodes
|
9 |
+
- 20
|
10 |
+
- - eval_freq
|
11 |
+
- 50000
|
12 |
+
- - gym_packages
|
13 |
+
- []
|
14 |
+
- - hyperparams
|
15 |
+
- null
|
16 |
+
- - log_folder
|
17 |
+
- logs
|
18 |
+
- - log_interval
|
19 |
+
- 10
|
20 |
+
- - n_eval_envs
|
21 |
+
- 10
|
22 |
+
- - n_evaluations
|
23 |
+
- 20
|
24 |
+
- - n_jobs
|
25 |
+
- 1
|
26 |
+
- - n_startup_trials
|
27 |
+
- 10
|
28 |
+
- - n_timesteps
|
29 |
+
- -1
|
30 |
+
- - n_trials
|
31 |
+
- 10
|
32 |
+
- - no_optim_plots
|
33 |
+
- false
|
34 |
+
- - num_threads
|
35 |
+
- -1
|
36 |
+
- - optimization_log_path
|
37 |
+
- null
|
38 |
+
- - optimize_hyperparameters
|
39 |
+
- false
|
40 |
+
- - pruner
|
41 |
+
- median
|
42 |
+
- - sampler
|
43 |
+
- tpe
|
44 |
+
- - save_freq
|
45 |
+
- -1
|
46 |
+
- - save_replay_buffer
|
47 |
+
- false
|
48 |
+
- - seed
|
49 |
+
- 153570433
|
50 |
+
- - storage
|
51 |
+
- null
|
52 |
+
- - study_name
|
53 |
+
- null
|
54 |
+
- - tensorboard_log
|
55 |
+
- ''
|
56 |
+
- - trained_agent
|
57 |
+
- ''
|
58 |
+
- - truncate_last_trajectory
|
59 |
+
- true
|
60 |
+
- - uuid
|
61 |
+
- false
|
62 |
+
- - vec_env
|
63 |
+
- dummy
|
64 |
+
- - verbose
|
65 |
+
- 1
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - cg_damping
|
5 |
+
- 0.1
|
6 |
+
- - cg_max_steps
|
7 |
+
- 25
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- 0.001
|
14 |
+
- - n_critic_updates
|
15 |
+
- 20
|
16 |
+
- - n_envs
|
17 |
+
- 2
|
18 |
+
- - n_steps
|
19 |
+
- 1024
|
20 |
+
- - n_timesteps
|
21 |
+
- 1000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - sub_sampling_factor
|
27 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e15108562cabaca92d5edb7606ebfd6eb5a6743fa03ee39dd366b01c33fc93f4
|
3 |
+
size 1481967
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 4983.7911935, "std_reward": 1338.4565536087625, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-02T12:55:30.726189"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21e49a1ad2ecd41c9eb09022eebabc7780ea5990318632b6af2025198f921503
|
3 |
+
size 78909
|
trpo-Walker2d-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5c1566c5288db375317e15c76d5f028fbcceddbc9e83903cb08a976bf8f0feb
|
3 |
+
size 115723
|
trpo-Walker2d-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.1a8
|
trpo-Walker2d-v3/data
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4ee885f950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4ee885f9e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4ee885fa70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4ee885fb00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4ee885fb90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4ee885fc20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4ee885fcb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4ee885fd40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4ee885fdd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4ee885fe60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4ee885fef0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f4ee88b0840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVpQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxGFlGgKiUOIAAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/5R0lGKMBGhpZ2iUaBBoEksAhZRoFIeUUpQoSwFLEYWUaAqJQ4gAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/lHSUYowNYm91bmRlZF9iZWxvd5RoEGgSSwCFlGgUh5RSlChLAUsRhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEQAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEGgSSwCFlGgUh5RSlChLAUsRhZRoKIlDEQAAAAAAAAAAAAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROjAZfc2hhcGWUSxGFlHViLg==",
|
26 |
+
"dtype": "float64",
|
27 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
|
28 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
|
29 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
|
30 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
|
31 |
+
"_np_random": null,
|
32 |
+
"_shape": [
|
33 |
+
17
|
34 |
+
]
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gASVPwwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgGjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwaFlGgKiUMYAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEGgSSwCFlGgUh5RSlChLAUsGhZRoColDGAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5R0lGKMDWJvdW5kZWRfYmVsb3eUaBBoEksAhZRoFIeUUpQoSwFLBoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwYBAQEBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgQaBJLAIWUaBSHlFKUKEsBSwaFlGgoiUMGAQEBAQEBlHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDiMBXN0YXRllH2UKIwDa2V5lGgQaBJLAIWUaBSHlFKUKEsBTXAChZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGKJQsAJAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUdJRijANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YowGX3NoYXBllEsGhZR1Yi4=",
|
39 |
+
"dtype": "float32",
|
40 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
41 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
42 |
+
"bounded_below": "[ True True True True True True]",
|
43 |
+
"bounded_above": "[ True True True True True True]",
|
44 |
+
"_np_random": "RandomState(MT19937)",
|
45 |
+
"_shape": [
|
46 |
+
6
|
47 |
+
]
|
48 |
+
},
|
49 |
+
"n_envs": 2,
|
50 |
+
"num_timesteps": 1001472,
|
51 |
+
"_total_timesteps": 1000000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1640685857.547758,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gASV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
59 |
+
},
|
60 |
+
"tensorboard_log": null,
|
61 |
+
"lr_schedule": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gASV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvYW50b25pbi9Eb2N1bWVudHMvZGxyL3JsL3RvcmNoeS1iYXNlbGluZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
64 |
+
},
|
65 |
+
"_last_obs": null,
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gASVigAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwKFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDAgAAlHSUYi4="
|
69 |
+
},
|
70 |
+
"_last_original_obs": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gASVnQEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwJLEYaUaAOMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIQAQAAzZdhqH4K9D980bDSMxVcv56S5mgT/XK/Cj53d9sKYj+zxfYttEFnv9RUsnuk6l8/cMsTltb4YD9guJihkHxFv+w5jeH/E16/kCXBKimRQj8szwc4kxNrvwBy2SMQqvQ+BpJlnjU7bL/QaYki9UcxP9BmZyDAQzI/8AeNEk5kPT/iqwZTgTpav8h0oWveBfQ/eFT6yyahSj/woJLLAvxXPyajwtlcVHC/AB2vuHht9b5IhJIgQElkv0u2IiFKKXI/FnH60WWobz/ySB48OpVsP+yXcLm/+mM/KSdBNsKZZr/IWHgTXKJlv0DWgUuDjjo/gNZ7RIjQAL8UGWviIBVcv3w2U+faDVM/cFNVTWVJVj+UdJRiLg=="
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gASVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI00z3Olm3s0CUhpRSlIwBbJRN6AOMAXSUR0CYdfjzZpSKdX2UKGgGaAloD0MIDjDzHQwXtECUhpRSlGgVTegDaBZHQJh3GDZlFtt1fZQoaAZoCWgPQwgNbQA20ByYQJSGlFKUaBVNbwFoFkdAmHjWZ7Xxv3V9lChoBmgJaA9DCHR+iuMkcbRAlIaUUpRoFU3oA2gWR0CYgc23KB/adX2UKGgGaAloD0MI+WUwRgyUrkCUhpRSlGgVTRsDaBZHQJiCDfBN21V1fZQoaAZoCWgPQwgDYDyDxpizQJSGlFKUaBVN6ANoFkdAmI+FY6nzhHV9lChoBmgJaA9DCNhGPNnp9bNAlIaUUpRoFU3oA2gWR0CYj7Vo6CDmdX2UKGgGaAloD0MIPdNLjDWVmkCUhpRSlGgVTXwBaBZHQJiTAtg8bJh1fZQoaAZoCWgPQwic4JumPwGdQJSGlFKUaBVNogFoFkdAmJnmNipeeHV9lChoBmgJaA9DCGqHvyY/s7NAlIaUUpRoFU3oA2gWR0CYm3b70nPWdX2UKGgGaAloD0MIkNrEyeW1o0CUhpRSlGgVTRkCaBZHQJieSOMl1KZ1fZQoaAZoCWgPQwhpkIKnkEx3QJSGlFKUaBVLiWgWR0CYn1fCyhSMdX2UKGgGaAloD0MIF5tWChncqkCUhpRSlGgVTcECaBZHQJijqIHkcS51fZQoaAZoCWgPQwhPlIRE6hC0QJSGlFKUaBVN6ANoFkdAmKoj2OAAhnV9lChoBmgJaA9DCBUA4xm0oLNAlIaUUpRoFU3oA2gWR0CYrnTefqX4dX2UKGgGaAloD0MIkDF3LflfoUCUhpRSlGgVTeoBaBZHQJiyQxpL26F1fZQoaAZoCWgPQwiVDABV0Eu0QJSGlFKUaBVN6ANoFkdAmLSJHd43WHV9lChoBmgJaA9DCCyC/62QA7RAlIaUUpRoFU3oA2gWR0CYvYLg4wRHdX2UKGgGaAloD0MIrrmj/806tECUhpRSlGgVTegDaBZHQJi/2jKxLTR1fZQoaAZoCWgPQwgBwocSfdCaQJSGlFKUaBVNpwFoFkdAmMW4dlum8HV9lChoBmgJaA9DCNcyGY5PC69AlIaUUpRoFU0wA2gWR0CYxnH0se4kdX2UKGgGaAloD0MIlWWIYw2tpkCUhpRSlGgVTWUCaBZHQJjLpR8+ial1fZQoaAZoCWgPQwjsSzYevCe0QJSGlFKUaBVN6ANoFkdAmNCb0nPVu3V9lChoBmgJaA9DCHU6kPUUA5xAlIaUUpRoFU2VAWgWR0CY0XoJzDGcdX2UKGgGaAloD0MIBfnZyPUmg0CUhpRSlGgVS7JoFkdAmNLXRw6ySnV9lChoBmgJaA9DCPRSsTEn7qxAlIaUUpRoFU3zAmgWR0CY2Uood+5OdX2UKGgGaAloD0MIX5fhPyUJtECUhpRSlGgVTegDaBZHQJjd7aIvalF1fZQoaAZoCWgPQwgG1JtRC+ezQJSGlFKUaBVN6ANoFkdAmOGt8/lhgHV9lChoBmgJaA9DCC4aMh61tpJAlIaUUpRoFU0qAWgWR0CY5vmelKsddX2UKGgGaAloD0MIsHPTZvQstECUhpRSlGgVTegDaBZHQJjo7gl4TsZ1fZQoaAZoCWgPQwiRnbexHVC0QJSGlFKUaBVN6ANoFkdAmReX8n/kvXV9lChoBmgJaA9DCGDNAYIJDLNAlIaUUpRoFU3oA2gWR0CZGctbs4T9dX2UKGgGaAloD0MILzTXaajTtECUhpRSlGgVTegDaBZHQJkishwEQoV1fZQoaAZoCWgPQwhlxttKayC0QJSGlFKUaBVN6ANoFkdAmSSkjX4CZHV9lChoBmgJaA9DCD/EBgtnfpFAlIaUUpRoFU0gAWgWR0CZJQs4DLbIdX2UKGgGaAloD0MIDhKifFlerUCUhpRSlGgVTfUCaBZHQJkumwyIpH91fZQoaAZoCWgPQwi+h0uOR5SzQJSGlFKUaBVN6ANoFkdAmTAc8kleGHV9lChoBmgJaA9DCLbz/dQoeZRAlIaUUpRoFU04AWgWR0CZMoCdz4lAdX2UKGgGaAloD0MInNzvUCiXtECUhpRSlGgVTegDaBZHQJk5/IyTINp1fZQoaAZoCWgPQwhZpfRMxyO0QJSGlFKUaBVN6ANoFkdAmT4BoIv8InV9lChoBmgJaA9DCPIKRE+qt41AlIaUUpRoFU0GAWgWR0CZQAQJ5VwQdX2UKGgGaAloD0MIWi+Gcgq+s0CUhpRSlGgVTegDaBZHQJlE+18b70p1fZQoaAZoCWgPQwgWinQ/PxKmQJSGlFKUaBVNTAJoFkdAmUm8Y2sJY3V9lChoBmgJaA9DCEzg1t0QqLNAlIaUUpRoFU3oA2gWR0CZS0zrNW2gdX2UKGgGaAloD0MIz9kCQqvfhECUhpRSlGgVS8VoFkdAmU/kNFz+33V9lChoBmgJaA9DCPFmDd4vFbFAlIaUUpRoFU1MA2gWR0CZU4vcrRShdX2UKGgGaAloD0MIHeT1YJL6rECUhpRSlGgVTeYCaBZHQJlVvbCaZx91fZQoaAZoCWgPQwj8jAsH4u6wQJSGlFKUaBVNawNoFkdAmV5N34bjtHV9lChoBmgJaA9DCGYtBaRN+adAlIaUUpRoFU16AmgWR0CZXo1/DtPYdX2UKGgGaAloD0MIFAmmmllEpkCUhpRSlGgVTT0CaBZHQJll3NgSey11fZQoaAZoCWgPQwhRwHYwuuqnQJSGlFKUaBVNdAJoFkdAmWaRWxQizXV9lChoBmgJaA9DCDnVWpjluaxAlIaUUpRoFU3fAmgWR0CZbR3QD3dsdX2UKGgGaAloD0MIpivYRthesUCUhpRSlGgVTWcDaBZHQJltgpSaVlh1fZQoaAZoCWgPQwgdyeU/eFqzQJSGlFKUaBVNvwNoFkdAmXftAgPmP3V9lChoBmgJaA9DCGU2yCQ70LRAlIaUUpRoFU3oA2gWR0CZeL0tyxRmdX2UKGgGaAloD0MIRfRr60dorUCUhpRSlGgVTf0CaBZHQJmDz/uLJjl1fZQoaAZoCWgPQwgMXB5rCl+0QJSGlFKUaBVN6ANoFkdAmYaveYUnHHV9lChoBmgJaA9DCK2KcJNJqKlAlIaUUpRoFU2aAmgWR0CZjxgqEvkBdX2UKGgGaAloD0MIOIJUinXlo0CUhpRSlGgVTRkCaBZHQJmT3dDYywh1fZQoaAZoCWgPQwimgR/VINK0QJSGlFKUaBVN6ANoFkdAmZUSJbdJrnV9lChoBmgJaA9DCNrmxvQEoKxAlIaUUpRoFU3fAmgWR0CZoLCWeHzpdX2UKGgGaAloD0MIQMHFii7XtECUhpRSlGgVTegDaBZHQJmiEO/cnE51fZQoaAZoCWgPQwhinwCKIZmcQJSGlFKUaBVNkgFoFkdAmawCILw4KnV9lChoBmgJaA9DCKxzDMiG66NAlIaUUpRoFU05AmgWR0CZrDyiVSn+dX2UKGgGaAloD0MI8UdRZ7beqUCUhpRSlGgVTaQCaBZHQJmyQnMMZxd1fZQoaAZoCWgPQwhWRbjJxCS0QJSGlFKUaBVN6ANoFkdAmbtXJtBOYnV9lChoBmgJaA9DCOnRVE/mV7RAlIaUUpRoFU3oA2gWR0CZwboRqXWwdX2UKGgGaAloD0MIxjGSPaKuiECUhpRSlGgVS+loFkdAmcPtNahYeXV9lChoBmgJaA9DCEP/BBdXubRAlIaUUpRoFU3kA2gWR0CZxIMtbs4UdX2UKGgGaAloD0MIfxR15vYHskCUhpRSlGgVTXsDaBZHQJnSDT5O8Ch1fZQoaAZoCWgPQwiJJ7uZsQq0QJSGlFKUaBVN6ANoFkdAmdODPnjhk3V9lChoBmgJaA9DCDMZjudPh7JAlIaUUpRoFU2tA2gWR0CZ5IFAE+xGdX2UKGgGaAloD0MIE4B/SqE9s0CUhpRSlGgVTccDaBZHQJnmaT4cm0F1fZQoaAZoCWgPQwg8hVypp5+LQJSGlFKUaBVL+GgWR0CZ5tNKh+OPdX2UKGgGaAloD0MIcXSV7m5rmECUhpRSlGgVTXMBaBZHQJnshg9eQdV1fZQoaAZoCWgPQwjzAuyjwzGkQJSGlFKUaBVNFQJoFkdAme8OizsyBXV9lChoBmgJaA9DCMB1xYycYbRAlIaUUpRoFU3oA2gWR0CZ+RkM1CPZdX2UKGgGaAloD0MIk6zD0WFlsUCUhpRSlGgVTV4DaBZHQJn5uE25xzd1fZQoaAZoCWgPQwiADvPlZXWXQJSGlFKUaBVNdQFoFkdAmf1JaaCtinV9lChoBmgJaA9DCK1POSa7grRAlIaUUpRoFU3oA2gWR0CaBvhttQ9BdX2UKGgGaAloD0MIByRh3/7dsECUhpRSlGgVTV4DaBZHQJoKDNQj2SN1fZQoaAZoCWgPQwg504Ttp36SQJSGlFKUaBVNKgFoFkdAmgz2tlqagHV9lChoBmgJaA9DCNvEyf2GNq9AlIaUUpRoFU0PA2gWR0CaDmwfQrtmdX2UKGgGaAloD0MI+nspPKjbjECUhpRSlGgVS+9oFkdAmhKC0BwMpnV9lChoBmgJaA9DCHnMQGUc4oFAlIaUUpRoFUusaBZHQJoTw+wC8vp1fZQoaAZoCWgPQwjxKmubolWqQJSGlFKUaBVNtwJoFkdAmhlHAVO9FnV9lChoBmgJaA9DCOp7DcGx7IhAlIaUUpRoFUviaBZHQJobSaVlf7d1fZQoaAZoCWgPQwjzAYHO6C+0QJSGlFKUaBVN6ANoFkdAmiBClWOp9HV9lChoBmgJaA9DCNKnVfSntaxAlIaUUpRoFU3TAmgWR0CaJgfV7Qb/dX2UKGgGaAloD0MI2UKQgzq9pkCUhpRSlGgVTXACaBZHQJom/wH7gsN1fZQoaAZoCWgPQwiMu0G0NsGiQJSGlFKUaBVNAQJoFkdAmi65yQxN7HV9lChoBmgJaA9DCP5kjA9fubRAlIaUUpRoFU3oA2gWR0CaMixQzk6tdX2UKGgGaAloD0MIzgAXZCtes0CUhpRSlGgVTbgDaBZHQJo82OLiuMd1fZQoaAZoCWgPQwiyRj1EG36sQJSGlFKUaBVNyAJoFkdAmj4gvtdAxHV9lChoBmgJaA9DCH4AUptAKbJAlIaUUpRoFU2UA2gWR0CaRwtNi6QOdX2UKGgGaAloD0MIoGtfQKdps0CUhpRSlGgVTegDaBZHQJpJtNcnmaJ1fZQoaAZoCWgPQwgdsKvJZ6OyQJSGlFKUaBVNmgNoFkdAmk+m47Rv33V9lChoBmgJaA9DCGIx6lqrRpBAlIaUUpRoFU0GAWgWR0CaVLC0WuYAdX2UKGgGaAloD0MIDf5+MSvOs0CUhpRSlGgVTegDaBZHQJp7jo/zJ6p1fZQoaAZoCWgPQwjkafmBa9J1QJSGlFKUaBVLfmgWR0CafBmozeoDdWUu"
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 489,
|
87 |
+
"n_steps": 1024,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 0.95,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.0,
|
92 |
+
"max_grad_norm": 0.0,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"batch_size": 128,
|
95 |
+
"cg_max_steps": 25,
|
96 |
+
"cg_damping": 0.1,
|
97 |
+
"line_search_shrinking_factor": 0.8,
|
98 |
+
"line_search_max_iter": 10,
|
99 |
+
"target_kl": 0.01,
|
100 |
+
"n_critic_updates": 20,
|
101 |
+
"sub_sampling_factor": 1
|
102 |
+
}
|
trpo-Walker2d-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d78ec5c207265594a9201ed724db28c35b193a7d8c8b3440b86af94b7c7db0a
|
3 |
+
size 46337
|
trpo-Walker2d-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beff159ebf5f11a2ab89f175d6322af324f7fc5a6f4a1ab224565e6c2fab4d74
|
3 |
+
size 48638
|
trpo-Walker2d-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-Walker2d-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.13.0-44-generic-x86_64-with-debian-bullseye-sid #49~20.04.1-Ubuntu SMP Wed May 18 18:44:28 UTC 2022
|
2 |
+
Python: 3.7.10
|
3 |
+
Stable-Baselines3: 1.5.1a8
|
4 |
+
PyTorch: 1.11.0
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.2
|
7 |
+
Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fd9d01fc92d6d0977934db40124ec23e52d3a0f12dbb3cb399f55676bf058f2
|
3 |
+
size 5155
|