# import requests # import json # import os # # Your Hugging Face model URL # API_URL = "sayyedAhmed/Crisis_Severity_Predictor_LSTM" # Replace with your model's URL # # Load your Hugging Face API token # API_KEY = os.getenv("HF_API_KEY") # Ensure the API key is stored in the environment or replace with the actual key # headers = { # "Authorization": f"Bearer {API_KEY}", # "Content-Type": "application/json" # } # payload = { # "inputs": "Your test input here" # Replace this with the actual input for your model # } # # Make the POST request to Hugging Face Inference API # response = requests.post(API_URL, headers=headers, json=payload) # # Print the response (the predictions) # print(response.json()) from transformers import pipeline # Specify the model you want to use model_name = "sayyedAhmed/Crisis_Severity_Predictor_LSTM" # Create the pipeline with manual framework specification (using 'tf' for TensorFlow) classifier = pipeline("text-classification", model=model_name, framework="pt") # Use the pipeline to run inference result = classifier("Example text for classification.") print(result)