File size: 3,588 Bytes
11ceb39 9cf2973 cfcadb2 9cf2973 cfcadb2 9cf2973 11ceb39 cfcadb2 11ceb39 9cf2973 11ceb39 9cf2973 11ceb39 9cf2973 11ceb39 9cf2973 11ceb39 9cf2973 11ceb39 9cf2973 11ceb39 9cf2973 11ceb39 9cf2973 11ceb39 9cf2973 cfcadb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: other
tags:
- vision
- image-segmentation
- generated_from_trainer
widget:
- src: >-
https://media.istockphoto.com/id/515788534/photo/cheerful-and-confidant.jpg?s=612x612&w=0&k=20&c=T0Z4DfameRpyGhzevPomrm-wjZp7wmGjpAyjGcTzpkA=
example_title: Person
- src: >-
https://storage.googleapis.com/pai-images/1484fd9ea9d746eb9f1de0d6778dbea2.jpeg
example_title: Person
datasets:
- sayeed99/fashion_segmentation
model-index:
- name: segformer-b2-fashion
results: []
pipeline_tag: image-segmentation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-b2-fashion
This model is a fine-tuned version of [nvidia/mit-b2](https://huggingface.co/nvidia/mit-b2) on the sayeed99/fashion_segmentation dataset.
```python
from transformers import SegformerImageProcessor, AutoModelForSemanticSegmentation
from PIL import Image
import requests
import matplotlib.pyplot as plt
import torch.nn as nn
processor = SegformerImageProcessor.from_pretrained("sayeed99/segformer-b2-fashion")
model = AutoModelForSemanticSegmentation.from_pretrained("sayeed99/segformer-b2-fashion")
url = "https://plus.unsplash.com/premium_photo-1673210886161-bfcc40f54d1f?ixlib=rb-4.0.3&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8cGVyc29uJTIwc3RhbmRpbmd8ZW58MHx8MHx8&w=1000&q=80"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits,
size=image.size[::-1],
mode="bilinear",
align_corners=False,
)
pred_seg = upsampled_logits.argmax(dim=1)[0]
plt.imshow(pred_seg)
```
Labels : {"0":"Everything Else", "1": "shirt, blouse", "2": "top, t-shirt, sweatshirt", "3": "sweater", "4": "cardigan", "5": "jacket", "6": "vest", "7": "pants", "8": "shorts", "9": "skirt", "10": "coat", "11": "dress", "12": "jumpsuit", "13": "cape", "14": "glasses", "15": "hat", "16": "headband, head covering, hair accessory", "17": "tie", "18": "glove", "19": "watch", "20": "belt", "21": "leg warmer", "22": "tights, stockings", "23": "sock", "24": "shoe", "25": "bag, wallet", "26": "scarf", "27": "umbrella", "28": "hood", "29": "collar", "30": "lapel", "31": "epaulette", "32": "sleeve", "33": "pocket", "34": "neckline", "35": "buckle", "36": "zipper", "37": "applique", "38": "bead", "39": "bow", "40": "flower", "41": "fringe", "42": "ribbon", "43": "rivet", "44": "ruffle", "45": "sequin", "46": "tassel"}
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3
### License
The license for this model can be found [here](https://github.com/NVlabs/SegFormer/blob/master/LICENSE).
### BibTeX entry and citation info
```bibtex
@article{DBLP:journals/corr/abs-2105-15203,
author = {Enze Xie and
Wenhai Wang and
Zhiding Yu and
Anima Anandkumar and
Jose M. Alvarez and
Ping Luo},
title = {SegFormer: Simple and Efficient Design for Semantic Segmentation with
Transformers},
journal = {CoRR},
volume = {abs/2105.15203},
year = {2021},
url = {https://arxiv.org/abs/2105.15203},
eprinttype = {arXiv},
eprint = {2105.15203},
timestamp = {Wed, 02 Jun 2021 11:46:42 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-15203.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
} |