File size: 2,081 Bytes
4f09e8f
 
 
 
 
 
88e0211
 
 
 
4f09e8f
 
 
 
 
 
 
 
 
 
 
88e0211
 
 
 
 
 
4f09e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88e0211
 
 
 
 
 
 
 
 
 
 
4f09e8f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: facebook/esm2_t6_8M_UR50D
metrics:
- precision
- recall
- accuracy
model-index:
- name: esm2-t6-8M-lora-256-remote-homology-filtered
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esm2-t6-8M-lora-256-remote-homology-filtered

This model is a fine-tuned version of [facebook/esm2_t6_8M_UR50D](https://huggingface.co/facebook/esm2_t6_8M_UR50D) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5982
- Precision: 0.6901
- Recall: 0.6529
- F1-score: 0.6709
- Accuracy: 0.6788

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1-score | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:--------:|:--------:|
| 0.6365        | 1.0   | 7969  | 0.6357          | 0.6218    | 0.7071 | 0.6617   | 0.6374   |
| 0.6046        | 2.0   | 15938 | 0.6102          | 0.6864    | 0.6149 | 0.6487   | 0.6660   |
| 0.6134        | 3.0   | 23907 | 0.6017          | 0.6887    | 0.6469 | 0.6672   | 0.6763   |
| 0.6108        | 4.0   | 31876 | 0.5986          | 0.6920    | 0.6468 | 0.6687   | 0.6785   |
| 0.5831        | 5.0   | 39845 | 0.5982          | 0.6901    | 0.6529 | 0.6709   | 0.6788   |


### Framework versions

- PEFT 0.11.1
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2