--- tags: - autotrain - text-classification language: - unk widget: - text: "I love AutoTrain 🤗" datasets: - sasha/autotrain-data-RobertaBaseTweetEval co2_eq_emissions: emissions: 22.606335926892854 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 1281048988 - CO2 Emissions (in grams): 22.6063 ## Validation Metrics - Loss: 0.589 - Accuracy: 0.747 - Macro F1: 0.722 - Micro F1: 0.747 - Weighted F1: 0.744 - Macro Precision: 0.743 - Micro Precision: 0.747 - Weighted Precision: 0.746 - Macro Recall: 0.708 - Micro Recall: 0.747 - Weighted Recall: 0.747 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fsasha%2Fautotrain-RobertaBaseTweetEval-1281048988 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("sasha/autotrain-RobertaBaseTweetEval-1281048988", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("sasha/autotrain-RobertaBaseTweetEval-1281048988", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```