--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-chinese-ner results: [] --- # bert-base-chinese-ner This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0378 - Precision: 0.9227 - Recall: 0.9195 - F1: 0.9211 - Accuracy: 0.9910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0839 | 1.0 | 5796 | 0.0400 | 0.8999 | 0.8866 | 0.8932 | 0.9891 | | 0.0266 | 2.0 | 11592 | 0.0378 | 0.9227 | 0.9195 | 0.9211 | 0.9910 | | 0.0124 | 3.0 | 17388 | 0.0411 | 0.9361 | 0.9237 | 0.9299 | 0.9919 | ### Framework versions - Transformers 4.39.2 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2