santiviquez
commited on
Commit
·
902f4e6
1
Parent(s):
4902510
update model card README.md
Browse files
README.md
CHANGED
@@ -20,7 +20,7 @@ model-index:
|
|
20 |
metrics:
|
21 |
- name: Rouge1
|
22 |
type: rouge
|
23 |
-
value:
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,11 +30,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss: 1.
|
34 |
-
- Rouge1:
|
35 |
-
- Rouge2:
|
36 |
-
- Rougel:
|
37 |
-
- Rougelsum:
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -59,32 +59,22 @@ The following hyperparameters were used during training:
|
|
59 |
- seed: 42
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
-
- num_epochs:
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
68 |
-
|
|
69 |
-
|
|
70 |
-
| 1.
|
71 |
-
| 1.
|
72 |
-
| 1.
|
73 |
-
| 1.
|
74 |
-
| 1.
|
75 |
-
| 1.
|
76 |
-
| 1.
|
77 |
-
| 1.
|
78 |
-
| 1.6581 | 11.0 | 3300 | 1.7809 | 42.291 | 19.0846 | 35.1938 | 38.894 |
|
79 |
-
| 1.6392 | 12.0 | 3600 | 1.7824 | 42.3588 | 19.4507 | 35.4588 | 39.2067 |
|
80 |
-
| 1.6258 | 13.0 | 3900 | 1.7806 | 42.0932 | 19.002 | 35.0112 | 38.8053 |
|
81 |
-
| 1.6042 | 14.0 | 4200 | 1.7828 | 42.0564 | 19.3141 | 35.2479 | 38.8301 |
|
82 |
-
| 1.5993 | 15.0 | 4500 | 1.7824 | 42.6056 | 19.5164 | 35.4112 | 39.2322 |
|
83 |
-
| 1.5869 | 16.0 | 4800 | 1.7839 | 42.1505 | 19.1529 | 35.0853 | 38.8788 |
|
84 |
-
| 1.5778 | 17.0 | 5100 | 1.7827 | 42.5416 | 19.5103 | 35.5507 | 39.293 |
|
85 |
-
| 1.5716 | 18.0 | 5400 | 1.7865 | 42.3028 | 19.3783 | 35.3466 | 39.0594 |
|
86 |
-
| 1.5615 | 19.0 | 5700 | 1.7857 | 42.4001 | 19.5111 | 35.4686 | 39.1614 |
|
87 |
-
| 1.5606 | 20.0 | 6000 | 1.7863 | 42.3215 | 19.4644 | 35.3715 | 39.1274 |
|
88 |
|
89 |
|
90 |
### Framework versions
|
|
|
20 |
metrics:
|
21 |
- name: Rouge1
|
22 |
type: rouge
|
23 |
+
value: 44.3313
|
24 |
---
|
25 |
|
26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
|
32 |
It achieves the following results on the evaluation set:
|
33 |
+
- Loss: 1.9335
|
34 |
+
- Rouge1: 44.3313
|
35 |
+
- Rouge2: 20.71
|
36 |
+
- Rougel: 37.221
|
37 |
+
- Rougelsum: 40.9603
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
59 |
- seed: 42
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 10
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
|
68 |
+
| 1.4912 | 1.0 | 300 | 1.9043 | 44.1517 | 20.0186 | 36.6053 | 40.5164 |
|
69 |
+
| 1.5055 | 2.0 | 600 | 1.8912 | 44.1473 | 20.4456 | 37.069 | 40.6714 |
|
70 |
+
| 1.4852 | 3.0 | 900 | 1.8986 | 44.7536 | 20.8646 | 37.525 | 41.2189 |
|
71 |
+
| 1.4539 | 4.0 | 1200 | 1.9136 | 44.2144 | 20.3446 | 37.1088 | 40.7581 |
|
72 |
+
| 1.4262 | 5.0 | 1500 | 1.9215 | 44.2656 | 20.6044 | 37.3267 | 40.9469 |
|
73 |
+
| 1.4118 | 6.0 | 1800 | 1.9247 | 43.8793 | 20.4663 | 37.0614 | 40.6065 |
|
74 |
+
| 1.3987 | 7.0 | 2100 | 1.9256 | 43.9981 | 20.2703 | 36.7856 | 40.6354 |
|
75 |
+
| 1.3822 | 8.0 | 2400 | 1.9316 | 43.9732 | 20.4559 | 36.8039 | 40.5784 |
|
76 |
+
| 1.3773 | 9.0 | 2700 | 1.9314 | 44.3075 | 20.5435 | 37.0457 | 40.832 |
|
77 |
+
| 1.3795 | 10.0 | 3000 | 1.9335 | 44.3313 | 20.71 | 37.221 | 40.9603 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Framework versions
|