--- license: other tags: - vision - image-segmentation datasets: - coco widget: - src: http://images.cocodataset.org/val2017/000000039769.jpg example_title: Cats - src: http://images.cocodataset.org/val2017/000000039770.jpg example_title: Castle --- # Mask2Former for Semantic Segmentation This repository contains the `Mask2Former` model fine-tuned for semantic segmentation tasks. The model can be used to predict segmentation masks on input images and is based on the `facebook/mask2former-swin-large-cityscapes-semantic` pre-trained model. ## Model Overview Mask2Former is a general-purpose framework for mask prediction tasks, including: - Semantic Segmentation - Instance Segmentation - Panoptic Segmentation This version has been fine-tuned and optimized for semantic segmentation tasks. You can use it for tasks such as road scene understanding, autonomous driving, and other segmentation-related applications. --- ## How to Use the Model You can use this model with the `transformers` library from Hugging Face. Below is an example to load the model, process an image, and visualize the output. ### Installation First, ensure you have the required libraries installed: ```bash pip install transformers torch torchvision pillow matplotlib ``` ### How to use Here is how to use this model: ``` from transformers import AutoImageProcessor, Mask2FormerForUniversalSegmentation from PIL import Image import torch import matplotlib.pyplot as plt # Load the processor and model model_name = "saninmohammedn/mask2former-deployment" processor = AutoImageProcessor.from_pretrained(model_name) model = Mask2FormerForUniversalSegmentation.from_pretrained(model_name) # Load an input image image_path = "your_image.jpg" # Replace with your image path image = Image.open(image_path).convert("RGB") # Prepare the image for the model inputs = processor(images=image, return_tensors="pt") # Perform inference with torch.no_grad(): outputs = model(**inputs) # Post-process the predicted segmentation map predicted_map = processor.post_process_semantic_segmentation( outputs, target_sizes=[image.size[::-1]] )[0].cpu().numpy() # Visualize the input and predicted segmentation map plt.figure(figsize=(10, 5)) # Display original image plt.subplot(1, 2, 1) plt.imshow(image) plt.title("Original Image") plt.axis("off") # Display predicted segmentation map plt.subplot(1, 2, 2) plt.imshow(predicted_map, cmap="jet") plt.title("Predicted Segmentation Map") plt.axis("off") plt.tight_layout() plt.show() ```