sammysun0711 commited on
Commit
bf2be70
·
1 Parent(s): 6539361

Upload 5 files

Browse files
BAAI_Aquila_Model_License.pdf ADDED
Binary file (225 kB). View file
 
modeling_aquila.py ADDED
@@ -0,0 +1,900 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ #from ...activations import ACT2FN
30
+ #from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ #from ...modeling_utils import PreTrainedModel
32
+ #from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ #from .configuration_llama import LlamaConfig
34
+
35
+ from transformers.activations import ACT2FN
36
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
37
+ from transformers.modeling_utils import PreTrainedModel
38
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
39
+ from transformers.models.llama.configuration_llama import LlamaConfig
40
+
41
+
42
+ logger = logging.get_logger(__name__)
43
+
44
+ _CONFIG_FOR_DOC = "LlamaConfig"
45
+
46
+
47
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
48
+ def _make_causal_mask(
49
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
50
+ ):
51
+ """
52
+ Make causal mask used for bi-directional self-attention.
53
+ """
54
+ bsz, tgt_len = input_ids_shape
55
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
56
+ mask_cond = torch.arange(mask.size(-1), device=device)
57
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
58
+ mask = mask.to(dtype)
59
+
60
+ if past_key_values_length > 0:
61
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
62
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
63
+
64
+
65
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
66
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
67
+ """
68
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
69
+ """
70
+ bsz, src_len = mask.size()
71
+ tgt_len = tgt_len if tgt_len is not None else src_len
72
+
73
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
74
+
75
+ inverted_mask = 1.0 - expanded_mask
76
+
77
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
78
+
79
+
80
+ class LlamaRMSNorm(nn.Module):
81
+ def __init__(self, hidden_size, eps=1e-6):
82
+ """
83
+ LlamaRMSNorm is equivalent to T5LayerNorm
84
+ """
85
+ super().__init__()
86
+ self.weight = nn.Parameter(torch.ones(hidden_size))
87
+ self.variance_epsilon = eps
88
+
89
+ def forward(self, hidden_states):
90
+ input_dtype = hidden_states.dtype
91
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
92
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
93
+
94
+ return (self.weight * hidden_states).to(input_dtype)
95
+
96
+
97
+ class LlamaRotaryEmbedding(torch.nn.Module):
98
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
99
+ super().__init__()
100
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
101
+ self.register_buffer("inv_freq", inv_freq)
102
+
103
+ # Build here to make `torch.jit.trace` work.
104
+ self.max_seq_len_cached = max_position_embeddings
105
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
106
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
107
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
108
+ emb = torch.cat((freqs, freqs), dim=-1)
109
+ dtype = torch.get_default_dtype()
110
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
111
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
112
+
113
+ def forward(self, x, seq_len=None):
114
+ # x: [bs, num_attention_heads, seq_len, head_size]
115
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
116
+ if seq_len > self.max_seq_len_cached:
117
+ self.max_seq_len_cached = seq_len
118
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
119
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
120
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
121
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
122
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(x.dtype), persistent=False)
123
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(x.dtype), persistent=False)
124
+ return (
125
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
126
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
127
+ )
128
+
129
+
130
+ def rotate_half(x):
131
+ """Rotates half the hidden dims of the input."""
132
+ x1 = x[..., : x.shape[-1] // 2]
133
+ x2 = x[..., x.shape[-1] // 2 :]
134
+ return torch.cat((-x2, x1), dim=-1)
135
+
136
+
137
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
138
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
139
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
140
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
141
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
142
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
143
+ q_embed = (q * cos) + (rotate_half(q) * sin)
144
+ k_embed = (k * cos) + (rotate_half(k) * sin)
145
+ return q_embed, k_embed
146
+
147
+
148
+ class LlamaMLP(nn.Module):
149
+ def __init__(
150
+ self,
151
+ hidden_size: int,
152
+ intermediate_size: int,
153
+ hidden_act: str,
154
+ ):
155
+ super().__init__()
156
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
157
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
158
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
159
+ self.act_fn = ACT2FN[hidden_act]
160
+
161
+ def forward(self, x):
162
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
163
+
164
+
165
+ class LlamaAttention(nn.Module):
166
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
167
+
168
+ def __init__(self, config: LlamaConfig):
169
+ super().__init__()
170
+ self.config = config
171
+ self.hidden_size = config.hidden_size
172
+ self.num_heads = config.num_attention_heads
173
+ self.head_dim = self.hidden_size // self.num_heads
174
+ self.max_position_embeddings = config.max_position_embeddings
175
+ #print("self.hidden_size: ", self.hidden_size)
176
+ #print("self.num_heads: ", self.num_heads)
177
+ #print("self.head_dim: ", self.head_dim)
178
+ #print("self.max_position_embeddings: ", self.max_position_embeddings)
179
+
180
+ if (self.head_dim * self.num_heads) != self.hidden_size:
181
+ raise ValueError(
182
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
183
+ f" and `num_heads`: {self.num_heads})."
184
+ )
185
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
186
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
187
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
188
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
189
+ self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
190
+
191
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
192
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
193
+
194
+ def forward(
195
+ self,
196
+ hidden_states: torch.Tensor,
197
+ attention_mask: Optional[torch.Tensor] = None,
198
+ position_ids: Optional[torch.LongTensor] = None,
199
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
200
+ output_attentions: bool = False,
201
+ use_cache: bool = False,
202
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
203
+ bsz, q_len, _ = hidden_states.size()
204
+
205
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
206
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
207
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
208
+
209
+ kv_seq_len = key_states.shape[-2]
210
+ if past_key_value is not None:
211
+ kv_seq_len += past_key_value[0].shape[-2]
212
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
213
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
214
+ # [bsz, nh, t, hd]
215
+
216
+ if past_key_value is not None:
217
+ # reuse k, v, self_attention
218
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
219
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
220
+
221
+ past_key_value = (key_states, value_states) if use_cache else None
222
+
223
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
224
+
225
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
226
+ raise ValueError(
227
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
228
+ f" {attn_weights.size()}"
229
+ )
230
+
231
+ if attention_mask is not None:
232
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
233
+ raise ValueError(
234
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
235
+ )
236
+ attn_weights = attn_weights + attention_mask
237
+ attn_weights = torch.max(
238
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
239
+ )
240
+
241
+ # upcast attention to fp32
242
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
243
+ attn_output = torch.matmul(attn_weights, value_states)
244
+
245
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
246
+ raise ValueError(
247
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
248
+ f" {attn_output.size()}"
249
+ )
250
+
251
+ attn_output = attn_output.transpose(1, 2)
252
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
253
+
254
+ attn_output = self.o_proj(attn_output)
255
+
256
+ if not output_attentions:
257
+ attn_weights = None
258
+
259
+ return attn_output, attn_weights, past_key_value
260
+
261
+
262
+ class LlamaDecoderLayer(nn.Module):
263
+ def __init__(self, config: LlamaConfig):
264
+ super().__init__()
265
+ self.hidden_size = config.hidden_size
266
+ self.self_attn = LlamaAttention(config=config)
267
+ self.mlp = LlamaMLP(
268
+ hidden_size=self.hidden_size,
269
+ intermediate_size=config.intermediate_size,
270
+ hidden_act=config.hidden_act,
271
+ )
272
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
273
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
274
+
275
+ def forward(
276
+ self,
277
+ hidden_states: torch.Tensor,
278
+ attention_mask: Optional[torch.Tensor] = None,
279
+ position_ids: Optional[torch.LongTensor] = None,
280
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
281
+ output_attentions: Optional[bool] = False,
282
+ use_cache: Optional[bool] = False,
283
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
284
+ """
285
+ Args:
286
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
287
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
288
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
289
+ output_attentions (`bool`, *optional*):
290
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
291
+ returned tensors for more detail.
292
+ use_cache (`bool`, *optional*):
293
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
294
+ (see `past_key_values`).
295
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
296
+ """
297
+
298
+ residual = hidden_states
299
+
300
+ hidden_states = self.input_layernorm(hidden_states)
301
+
302
+ # Self Attention
303
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
304
+ hidden_states=hidden_states,
305
+ attention_mask=attention_mask,
306
+ position_ids=position_ids,
307
+ past_key_value=past_key_value,
308
+ output_attentions=output_attentions,
309
+ use_cache=use_cache,
310
+ )
311
+ hidden_states = residual + hidden_states
312
+
313
+ # Fully Connected
314
+ residual = hidden_states
315
+ hidden_states = self.post_attention_layernorm(hidden_states)
316
+ hidden_states = self.mlp(hidden_states)
317
+ hidden_states = residual + hidden_states
318
+
319
+ outputs = (hidden_states,)
320
+
321
+ if output_attentions:
322
+ outputs += (self_attn_weights,)
323
+
324
+ if use_cache:
325
+ outputs += (present_key_value,)
326
+
327
+ return outputs
328
+
329
+
330
+ LLAMA_START_DOCSTRING = r"""
331
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
332
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
333
+ etc.)
334
+
335
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
336
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
337
+ and behavior.
338
+
339
+ Parameters:
340
+ config ([`LlamaConfig`]):
341
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
342
+ load the weights associated with the model, only the configuration. Check out the
343
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
344
+ """
345
+
346
+
347
+ @add_start_docstrings(
348
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
349
+ LLAMA_START_DOCSTRING,
350
+ )
351
+ class LlamaPreTrainedModel(PreTrainedModel):
352
+ config_class = LlamaConfig
353
+ base_model_prefix = "model"
354
+ supports_gradient_checkpointing = True
355
+ _no_split_modules = ["LlamaDecoderLayer"]
356
+ _skip_keys_device_placement = "past_key_values"
357
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
358
+
359
+ def _init_weights(self, module):
360
+ std = self.config.initializer_range
361
+ if isinstance(module, nn.Linear):
362
+ module.weight.data.normal_(mean=0.0, std=std)
363
+ if module.bias is not None:
364
+ module.bias.data.zero_()
365
+ elif isinstance(module, nn.Embedding):
366
+ module.weight.data.normal_(mean=0.0, std=std)
367
+ if module.padding_idx is not None:
368
+ module.weight.data[module.padding_idx].zero_()
369
+
370
+ def _set_gradient_checkpointing(self, module, value=False):
371
+ if isinstance(module, LlamaModel):
372
+ module.gradient_checkpointing = value
373
+
374
+
375
+ LLAMA_INPUTS_DOCSTRING = r"""
376
+ Args:
377
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
378
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
379
+ it.
380
+
381
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
382
+ [`PreTrainedTokenizer.__call__`] for details.
383
+
384
+ [What are input IDs?](../glossary#input-ids)
385
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
386
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
387
+
388
+ - 1 for tokens that are **not masked**,
389
+ - 0 for tokens that are **masked**.
390
+
391
+ [What are attention masks?](../glossary#attention-mask)
392
+
393
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
394
+ [`PreTrainedTokenizer.__call__`] for details.
395
+
396
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
397
+ `past_key_values`).
398
+
399
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
400
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
401
+ information on the default strategy.
402
+
403
+ - 1 indicates the head is **not masked**,
404
+ - 0 indicates the head is **masked**.
405
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
406
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
407
+ config.n_positions - 1]`.
408
+
409
+ [What are position IDs?](../glossary#position-ids)
410
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
411
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
412
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
413
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
414
+
415
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
416
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
417
+
418
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
419
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
420
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
421
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
422
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
423
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
424
+ model's internal embedding lookup matrix.
425
+ use_cache (`bool`, *optional*):
426
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
427
+ `past_key_values`).
428
+ output_attentions (`bool`, *optional*):
429
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
430
+ tensors for more detail.
431
+ output_hidden_states (`bool`, *optional*):
432
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
433
+ more detail.
434
+ return_dict (`bool`, *optional*):
435
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
436
+ """
437
+
438
+
439
+ @add_start_docstrings(
440
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
441
+ LLAMA_START_DOCSTRING,
442
+ )
443
+ class LlamaModel(LlamaPreTrainedModel):
444
+ """
445
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
446
+
447
+ Args:
448
+ config: LlamaConfig
449
+ """
450
+
451
+ def __init__(self, config: LlamaConfig):
452
+ super().__init__(config)
453
+ self.padding_idx = config.pad_token_id
454
+ self.vocab_size = config.vocab_size
455
+
456
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
457
+ self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
458
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
459
+
460
+ self.gradient_checkpointing = False
461
+ # Initialize weights and apply final processing
462
+ self.post_init()
463
+
464
+ def get_input_embeddings(self):
465
+ return self.embed_tokens
466
+
467
+ def set_input_embeddings(self, value):
468
+ self.embed_tokens = value
469
+
470
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
471
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
472
+ # create causal mask
473
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
474
+ combined_attention_mask = None
475
+ if input_shape[-1] > 1:
476
+ combined_attention_mask = _make_causal_mask(
477
+ input_shape,
478
+ inputs_embeds.dtype,
479
+ device=inputs_embeds.device,
480
+ past_key_values_length=past_key_values_length,
481
+ )
482
+
483
+ if attention_mask is not None:
484
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
485
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
486
+ inputs_embeds.device
487
+ )
488
+ combined_attention_mask = (
489
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
490
+ )
491
+
492
+ return combined_attention_mask
493
+
494
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
495
+ def forward(
496
+ self,
497
+ input_ids: torch.LongTensor = None,
498
+ attention_mask: Optional[torch.Tensor] = None,
499
+ position_ids: Optional[torch.LongTensor] = None,
500
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
501
+ inputs_embeds: Optional[torch.FloatTensor] = None,
502
+ use_cache: Optional[bool] = None,
503
+ output_attentions: Optional[bool] = None,
504
+ output_hidden_states: Optional[bool] = None,
505
+ return_dict: Optional[bool] = None,
506
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
507
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
508
+ output_hidden_states = (
509
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
510
+ )
511
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
512
+
513
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
514
+
515
+ # retrieve input_ids and inputs_embeds
516
+ if input_ids is not None and inputs_embeds is not None:
517
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
518
+ elif input_ids is not None:
519
+ batch_size, seq_length = input_ids.shape
520
+ elif inputs_embeds is not None:
521
+ batch_size, seq_length, _ = inputs_embeds.shape
522
+ else:
523
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
524
+
525
+ seq_length_with_past = seq_length
526
+ past_key_values_length = 0
527
+
528
+ if past_key_values is not None:
529
+ past_key_values_length = past_key_values[0][0].shape[2]
530
+ seq_length_with_past = seq_length_with_past + past_key_values_length
531
+
532
+ if position_ids is None:
533
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
534
+ position_ids = torch.arange(
535
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
536
+ )
537
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
538
+ else:
539
+ position_ids = position_ids.view(-1, seq_length).long()
540
+
541
+ if inputs_embeds is None:
542
+ inputs_embeds = self.embed_tokens(input_ids)
543
+ # embed positions
544
+ if attention_mask is None:
545
+ attention_mask = torch.ones(
546
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
547
+ )
548
+ attention_mask = self._prepare_decoder_attention_mask(
549
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
550
+ )
551
+
552
+ hidden_states = inputs_embeds
553
+
554
+ if self.gradient_checkpointing and self.training:
555
+ if use_cache:
556
+ logger.warning_once(
557
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
558
+ )
559
+ use_cache = False
560
+
561
+ # decoder layers
562
+ all_hidden_states = () if output_hidden_states else None
563
+ all_self_attns = () if output_attentions else None
564
+ next_decoder_cache = () if use_cache else None
565
+
566
+ for idx, decoder_layer in enumerate(self.layers):
567
+ if output_hidden_states:
568
+ all_hidden_states += (hidden_states,)
569
+
570
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
571
+
572
+ if self.gradient_checkpointing and self.training:
573
+
574
+ def create_custom_forward(module):
575
+ def custom_forward(*inputs):
576
+ # None for past_key_value
577
+ return module(*inputs, output_attentions, None)
578
+
579
+ return custom_forward
580
+
581
+ layer_outputs = torch.utils.checkpoint.checkpoint(
582
+ create_custom_forward(decoder_layer),
583
+ hidden_states,
584
+ attention_mask,
585
+ position_ids,
586
+ None,
587
+ )
588
+ else:
589
+ layer_outputs = decoder_layer(
590
+ hidden_states,
591
+ attention_mask=attention_mask,
592
+ position_ids=position_ids,
593
+ past_key_value=past_key_value,
594
+ output_attentions=output_attentions,
595
+ use_cache=use_cache,
596
+ )
597
+
598
+ hidden_states = layer_outputs[0]
599
+
600
+ if use_cache:
601
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
602
+
603
+ if output_attentions:
604
+ all_self_attns += (layer_outputs[1],)
605
+
606
+ hidden_states = self.norm(hidden_states)
607
+
608
+ # add hidden states from the last decoder layer
609
+ if output_hidden_states:
610
+ all_hidden_states += (hidden_states,)
611
+
612
+ next_cache = next_decoder_cache if use_cache else None
613
+ if not return_dict:
614
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
615
+ return BaseModelOutputWithPast(
616
+ last_hidden_state=hidden_states,
617
+ past_key_values=next_cache,
618
+ hidden_states=all_hidden_states,
619
+ attentions=all_self_attns,
620
+ )
621
+
622
+
623
+ class LlamaForCausalLM(LlamaPreTrainedModel):
624
+ _tied_weights_keys = ["lm_head.weight"]
625
+
626
+ def __init__(self, config):
627
+ super().__init__(config)
628
+ self.model = LlamaModel(config)
629
+
630
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
631
+
632
+ # Initialize weights and apply final processing
633
+ self.post_init()
634
+
635
+ def get_input_embeddings(self):
636
+ return self.model.embed_tokens
637
+
638
+ def set_input_embeddings(self, value):
639
+ self.model.embed_tokens = value
640
+
641
+ def get_output_embeddings(self):
642
+ return self.lm_head
643
+
644
+ def set_output_embeddings(self, new_embeddings):
645
+ self.lm_head = new_embeddings
646
+
647
+ def set_decoder(self, decoder):
648
+ self.model = decoder
649
+
650
+ def get_decoder(self):
651
+ return self.model
652
+
653
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
654
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
655
+ def forward(
656
+ self,
657
+ input_ids: torch.LongTensor = None,
658
+ attention_mask: Optional[torch.Tensor] = None,
659
+ position_ids: Optional[torch.LongTensor] = None,
660
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
661
+ inputs_embeds: Optional[torch.FloatTensor] = None,
662
+ labels: Optional[torch.LongTensor] = None,
663
+ use_cache: Optional[bool] = None,
664
+ output_attentions: Optional[bool] = None,
665
+ output_hidden_states: Optional[bool] = None,
666
+ return_dict: Optional[bool] = None,
667
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
668
+ r"""
669
+ Args:
670
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
671
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
672
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
673
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
674
+
675
+ Returns:
676
+
677
+ Example:
678
+
679
+ ```python
680
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
681
+
682
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
683
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
684
+
685
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
686
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
687
+
688
+ >>> # Generate
689
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
690
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
691
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
692
+ ```"""
693
+
694
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
695
+ output_hidden_states = (
696
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
697
+ )
698
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
699
+
700
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
701
+ outputs = self.model(
702
+ input_ids=input_ids,
703
+ attention_mask=attention_mask,
704
+ position_ids=position_ids,
705
+ past_key_values=past_key_values,
706
+ inputs_embeds=inputs_embeds,
707
+ use_cache=use_cache,
708
+ output_attentions=output_attentions,
709
+ output_hidden_states=output_hidden_states,
710
+ return_dict=return_dict,
711
+ )
712
+
713
+ hidden_states = outputs[0]
714
+ logits = self.lm_head(hidden_states)
715
+
716
+ loss = None
717
+ if labels is not None:
718
+ # Shift so that tokens < n predict n
719
+ shift_logits = logits[..., :-1, :].contiguous()
720
+ shift_labels = labels[..., 1:].contiguous()
721
+ # Flatten the tokens
722
+ loss_fct = CrossEntropyLoss()
723
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
724
+ shift_labels = shift_labels.view(-1)
725
+ # Enable model parallelism
726
+ shift_labels = shift_labels.to(shift_logits.device)
727
+ loss = loss_fct(shift_logits, shift_labels)
728
+
729
+ if not return_dict:
730
+ output = (logits,) + outputs[1:]
731
+ return (loss,) + output if loss is not None else output
732
+
733
+ return CausalLMOutputWithPast(
734
+ loss=loss,
735
+ logits=logits,
736
+ past_key_values=outputs.past_key_values,
737
+ hidden_states=outputs.hidden_states,
738
+ attentions=outputs.attentions,
739
+ )
740
+
741
+ def prepare_inputs_for_generation(
742
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
743
+ ):
744
+ if past_key_values:
745
+ input_ids = input_ids[:, -1:]
746
+
747
+ position_ids = kwargs.get("position_ids", None)
748
+ if attention_mask is not None and position_ids is None:
749
+ # create position_ids on the fly for batch generation
750
+ position_ids = attention_mask.long().cumsum(-1) - 1
751
+ position_ids.masked_fill_(attention_mask == 0, 1)
752
+ if past_key_values:
753
+ position_ids = position_ids[:, -1].unsqueeze(-1)
754
+
755
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
756
+ if inputs_embeds is not None and past_key_values is None:
757
+ model_inputs = {"inputs_embeds": inputs_embeds}
758
+ else:
759
+ model_inputs = {"input_ids": input_ids}
760
+
761
+ model_inputs.update(
762
+ {
763
+ "position_ids": position_ids,
764
+ "past_key_values": past_key_values,
765
+ "use_cache": kwargs.get("use_cache"),
766
+ "attention_mask": attention_mask,
767
+ }
768
+ )
769
+ return model_inputs
770
+
771
+ @staticmethod
772
+ def _reorder_cache(past_key_values, beam_idx):
773
+ reordered_past = ()
774
+ for layer_past in past_key_values:
775
+ reordered_past += (
776
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
777
+ )
778
+ return reordered_past
779
+
780
+
781
+ @add_start_docstrings(
782
+ """
783
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
784
+
785
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
786
+ (e.g. GPT-2) do.
787
+
788
+ Since it does classification on the last token, it requires to know the position of the last token. If a
789
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
790
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
791
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
792
+ each row of the batch).
793
+ """,
794
+ LLAMA_START_DOCSTRING,
795
+ )
796
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
797
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
798
+
799
+ def __init__(self, config):
800
+ super().__init__(config)
801
+ self.num_labels = config.num_labels
802
+ self.model = LlamaModel(config)
803
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
804
+
805
+ # Initialize weights and apply final processing
806
+ self.post_init()
807
+
808
+ def get_input_embeddings(self):
809
+ return self.model.embed_tokens
810
+
811
+ def set_input_embeddings(self, value):
812
+ self.model.embed_tokens = value
813
+
814
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
815
+ def forward(
816
+ self,
817
+ input_ids: torch.LongTensor = None,
818
+ attention_mask: Optional[torch.Tensor] = None,
819
+ position_ids: Optional[torch.LongTensor] = None,
820
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
821
+ inputs_embeds: Optional[torch.FloatTensor] = None,
822
+ labels: Optional[torch.LongTensor] = None,
823
+ use_cache: Optional[bool] = None,
824
+ output_attentions: Optional[bool] = None,
825
+ output_hidden_states: Optional[bool] = None,
826
+ return_dict: Optional[bool] = None,
827
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
828
+ r"""
829
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
830
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
831
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
832
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
833
+ """
834
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
835
+
836
+ transformer_outputs = self.model(
837
+ input_ids,
838
+ attention_mask=attention_mask,
839
+ position_ids=position_ids,
840
+ past_key_values=past_key_values,
841
+ inputs_embeds=inputs_embeds,
842
+ use_cache=use_cache,
843
+ output_attentions=output_attentions,
844
+ output_hidden_states=output_hidden_states,
845
+ return_dict=return_dict,
846
+ )
847
+ hidden_states = transformer_outputs[0]
848
+ logits = self.score(hidden_states)
849
+
850
+ if input_ids is not None:
851
+ batch_size = input_ids.shape[0]
852
+ else:
853
+ batch_size = inputs_embeds.shape[0]
854
+
855
+ if self.config.pad_token_id is None and batch_size != 1:
856
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
857
+ if self.config.pad_token_id is None:
858
+ sequence_lengths = -1
859
+ else:
860
+ if input_ids is not None:
861
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
862
+ else:
863
+ sequence_lengths = -1
864
+
865
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
866
+
867
+ loss = None
868
+ if labels is not None:
869
+ labels = labels.to(logits.device)
870
+ if self.config.problem_type is None:
871
+ if self.num_labels == 1:
872
+ self.config.problem_type = "regression"
873
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
874
+ self.config.problem_type = "single_label_classification"
875
+ else:
876
+ self.config.problem_type = "multi_label_classification"
877
+
878
+ if self.config.problem_type == "regression":
879
+ loss_fct = MSELoss()
880
+ if self.num_labels == 1:
881
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
882
+ else:
883
+ loss = loss_fct(pooled_logits, labels)
884
+ elif self.config.problem_type == "single_label_classification":
885
+ loss_fct = CrossEntropyLoss()
886
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
887
+ elif self.config.problem_type == "multi_label_classification":
888
+ loss_fct = BCEWithLogitsLoss()
889
+ loss = loss_fct(pooled_logits, labels)
890
+ if not return_dict:
891
+ output = (pooled_logits,) + transformer_outputs[1:]
892
+ return ((loss,) + output) if loss is not None else output
893
+
894
+ return SequenceClassifierOutputWithPast(
895
+ loss=loss,
896
+ logits=pooled_logits,
897
+ past_key_values=transformer_outputs.past_key_values,
898
+ hidden_states=transformer_outputs.hidden_states,
899
+ attentions=transformer_outputs.attentions,
900
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<|endoftext|>",
3
+ "cls_token": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eos_token": "<|endoftext|>",
11
+ "sep_token": {
12
+ "content": "</s>",
13
+ "lstrip": false,
14
+ "normalized": true,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "unk_token": "<|endoftext|>"
19
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "bos_token": "<|endoftext|>",
4
+ "clean_up_tokenization_spaces": true,
5
+ "eos_token": "<|endoftext|>",
6
+ "model_max_length": 1000000000000000019884624838656,
7
+ "tokenizer_class": "GPTNeoXTokenizer",
8
+ "unk_token": "<|endoftext|>"
9
+ }