--- language: - ru license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small Ru - v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ru split: test args: 'config: ru, split: test' metrics: - name: Wer type: wer value: 11.208788514118268 --- # Whisper Small Ru - v2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2108 - Wer Ortho: 15.1680 - Wer: 11.2088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.1678 | 0.9843 | 1000 | 0.2046 | 16.5258 | 12.3257 | | 0.0885 | 1.9685 | 2000 | 0.1940 | 15.6577 | 11.7703 | | 0.0407 | 2.9528 | 3000 | 0.1983 | 15.1289 | 11.2725 | | 0.0186 | 3.9370 | 4000 | 0.2108 | 15.1680 | 11.2088 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1