File size: 7,201 Bytes
fd9390d a3047bd f677799 fd9390d b6b1f16 fd9390d 69e509f fd9390d 1505389 fd9390d 8699e47 fd9390d a64acc5 fd9390d 8699e47 97f6fde 8699e47 97f6fde 8699e47 fd9390d 1505389 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
language:
- en
- zh
- id
- th
- vi
- ms
- lo
datasets:
- cerebras/SlimPajama-627B
- Skywork/SkyPile-150B
- allenai/MADLAD-400
- cc100
tags:
- multilingual
- sea
- sailor
license: apache-2.0
base_model: Qwen/Qwen1.5-0.5B
inference: false
model-index:
- name: Sailor-0.5B
results:
- task:
type: text-generation
dataset:
name: XQuAD-Thai
type: XQuAD-Thai
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 15.84
- name: F1 (3-Shot)
type: F1 (3-Shot)
value: 27.58
- task:
type: text-generation
dataset:
name: TyDiQA-Indonesian
type: TyDiQA-Indonesian
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 30.44
- name: F1 (3-Shot)
type: F1 (3-Shot)
value: 54.74
- task:
type: text-generation
dataset:
name: XQuAD-Vietnamese
type: XQuAD-Vietnamese
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 21.13
- name: F1 (3-Shot)
type: F1 (3-Shot)
value: 40.57
- task:
type: text-generation
dataset:
name: XCOPA-Thai
type: XCOPA-Thai
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 51.00
- task:
type: text-generation
dataset:
name: XCOPA-Indonesian
type: XCOPA-Indonesian
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 58.20
- task:
type: text-generation
dataset:
name: XCOPA-Vietnamese
type: XCOPA-Vietnamese
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 58.00
- task:
type: text-generation
dataset:
name: M3Exam-Thai
type: M3Exam-Thai
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 24.41
- task:
type: text-generation
dataset:
name: M3Exam-Indonesian
type: M3Exam-Indonesian
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 26.15
- task:
type: text-generation
dataset:
name: M3Exam-Vietnamese
type: M3Exam-Vietnamese
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 30.91
- task:
type: text-generation
dataset:
name: BELEBELE-Thai
type: BELEBELE-Thai
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 32.22
- task:
type: text-generation
dataset:
name: BELEBELE-Indonesian
type: BELEBELE-Indonesian
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 30.89
- task:
type: text-generation
dataset:
name: BELEBELE-Vietnamese
type: BELEBELE-Vietnamese
metrics:
- name: EM (3-Shot)
type: EM (3-Shot)
value: 32.33
---
<div align="center">
<img src="banner_sailor.jpg" width="700"/>
</div>
Sailor is a suite of Open Language Models tailored for South-East Asia (SEA), focusing on languages such as 🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
Developed with careful data curation, Sailor models are designed to understand and generate text across diverse linguistic landscapes of SEA region.
Built from [Qwen 1.5](https://huggingface.co/collections/Qwen/qwen15-65c0a2f577b1ecb76d786524) , Sailor encompasses models of varying sizes, spanning from 0.5B to 14B versions for different requirements.
We further fine-tune the base model with open-source datasets to get instruction-tuned models, namedly Sailor-Chat.
Benchmarking results demonstrate Sailor's proficiency in tasks such as question answering, commonsense reasoning, and other tasks in SEA languages.
> The logo was generated by MidJourney
## Model Summary
- **Model Collections:** [Base Model & Chat Model](https://huggingface.co/collections/sail/sailor-65e19a749f978976f1959825)
- **Project Website:** [sea-sailor.github.io/blog/sailor1/](https://sea-sailor.github.io/blog/sailor1/)
- **Codebase:** [github.com/sail-sg/sailor-llm](https://github.com/sail-sg/sailor-llm)
- **Technical Report:** [arxiv.org/pdf/2404.03608.pdf](https://arxiv.org/pdf/2404.03608.pdf)
## Training details
Sailor is crafted by continually pre-training from language models like the remarkable Qwen 1.5 models, which already has a great performance on SEA languages.
The pre-training corpus heavily leverages the publicly available corpus, including
[SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B),
[SkyPile](https://huggingface.co/datasets/Skywork/SkyPile-150B),
[CC100](https://huggingface.co/datasets/cc100) and [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400).
By employing aggressive data deduplication and careful data cleaning on the collected corpus, we have attained a high-quality dataset spanning various languages.
Through systematic experiments to determine the weights of different languages, Sailor models undergo training from 200B to 400B tokens, tailored to different model sizes.
The approach boosts their performance on SEA languages while maintaining proficiency in English and Chinese without significant compromise.
Finally, we continually pre-train the Qwen1.5-0.5B model with 400 Billion tokens, and other models with 200 Billion tokens to obtain the Sailor models.
## Requirements
The code of Sailor has been in the latest Hugging face transformers and we advise you to install `transformers>=4.37.0`.
## Quickstart
Here provides a code snippet to show you how to load the tokenizer and model and how to generate contents.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model
model = AutoModelForCausalLM.from_pretrained("sail/Sailor-0.5B", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("sail/Sailor-0.5B")
input_message = "Model bahasa adalah model probabilistik"
### The given Indonesian input translates to 'A language model is a probabilistic model of.'
model_inputs = tokenizer([input_message], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=64
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
# License
Sailor is distributed under the terms of the Apache License 2.0.
No restrict on the research and the commercial use, but should comply with the [Qwen License](https://huggingface.co/Qwen/Qwen1.5-1.8B/blob/main/LICENSE).
## Citation
If you find sailor useful, please cite our work as follows:
```
@inproceedings{dou-etal-2024-sailor,
title = "Sailor: Open Language Models for South-{E}ast {A}sia",
author = "Dou, Longxu and Liu, Qian and Zeng, Guangtao and Guo, Jia and Zhou, Jiahui and Mao, Xin and Jin, Ziqi and Lu, Wei and Lin, Min",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
year = "2024",
}
```
# Contact Us
If you have any questions, please raise an issue or contact us at [[email protected]](mailto:[email protected]) or [[email protected]](mailto:[email protected]). |