--- inference: false license: openrail language: - it --- # ExtremITA Camoscio 7 bilion parameters adapters: ExtremITLLaMA This is ExtremITLLaMA, the adapters for the instruction-tuned Italian LLaMA model that participated in all the tasks of [EVALITA 2023](https://www.evalita.it/campaigns/evalita-2023/) winning 41% of tasks and achieving 64% of top-three positions. It requires the base model from [sag-uniroma2/extremITA-Camoscio-7b](https://huggingface.co/sag-uniroma2/extremITA-Camoscio-7b). # Usage Checkout the github repository for more insights and codes: https://github.com/crux82/ExtremITA ```python from peft import PeftModel from transformers import LLaMATokenizer, LLaMAForCausalLM import torch tokenizer = LLaMATokenizer.from_pretrained("yahma/llama-7b-hf") model = LlamaForCausalLM.from_pretrained( "sag-uniroma2/extremITA-Camoscio-7b", load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, "sag-uniroma2/extremITA-Camoscio-7b-adapters", torch_dtype=torch.float16, device_map="auto", ) ``` # Citation ``` @inproceedings{hromei2023extremita, author = {Claudiu Daniel Hromei and Danilo Croce and Valerio Basile and Roberto Basili}, title = {ExtremITA at EVALITA 2023: Multi-Task Sustainable Scaling to Large Language Models at its Extreme}, booktitle = {Proceedings of the Eighth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2023)}, publisher = {CEUR.org}, year = {2023}, month = {September}, address = {Parma, Italy} } ```