sadhaklal commited on
Commit
206a900
·
verified ·
1 Parent(s): f2582a6

updated README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -3
README.md CHANGED
@@ -2,8 +2,113 @@
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
 
 
 
 
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
5
+ pipeline_tag: tabular-regression
6
+ library_name: pytorch
7
+ datasets:
8
+ - gvlassis/california_housing
9
+ metrics:
10
+ - rmse
11
  ---
12
 
13
+ # wide-and-deep-net-california-housing-v3
14
+
15
+ A wide & deep neural network trained on the California Housing dataset.
16
+
17
+ It takes eight features: `'MedInc'`, `'HouseAge'`, `'AveRooms'`, `'AveBedrms'`, `'Population'`, `'AveOccup'`, `'Latitude'` and `'Longitude'`. It predicts `'MedHouseVal'`.
18
+
19
+ The first five features (`'MedInc'`, `'HouseAge'`, `'AveRooms'`, `'AveBedrms'` and `'Population'`) flow through the wide path.
20
+
21
+ The last six features (`'AveRooms'`, `'AveBedrms'`, `'Population'`, `'AveOccup'`, `'Latitude'` and `'Longitude'`) flow through the deep path.
22
+
23
+ Note: The features `'AveRooms'`, `'AveBedrms'` and `'Population'` flow through both the wide path and the deep path.
24
+
25
+ This model is a PyTorch adaptation of the TensorFlow model in Chapter 10 of Aurelien Geron's book 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow'.
26
+
27
+ ![](https://raw.githubusercontent.com/sambitmukherjee/handson-ml3-pytorch/main/chapter10/Figure_10-15.png)
28
+
29
+ Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/wide_and_deep_net_california_housing_v3.ipynb
30
+
31
+ Experiment tracking: https://wandb.ai/sadhaklal/wide-and-deep-net-california-housing
32
+
33
+ ## Usage
34
+
35
+ ```
36
+ from sklearn.datasets import fetch_california_housing
37
+
38
+ housing = fetch_california_housing(as_frame=True)
39
+
40
+ from sklearn.model_selection import train_test_split
41
+
42
+ X_train_full, X_test, y_train_full, y_test = train_test_split(housing['data'], housing['target'], test_size=0.25, random_state=42)
43
+ X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.25, random_state=42)
44
+
45
+ X_means, X_stds = X_train.mean(axis=0), X_train.std(axis=0)
46
+ X_train = (X_train - X_means) / X_stds
47
+ X_valid = (X_valid - X_means) / X_stds
48
+ X_test = (X_test - X_means) / X_stds
49
+
50
+ import torch
51
+
52
+ device = torch.device("cpu")
53
+
54
+ from dataclasses import dataclass
55
+ from typing import Optional
56
+
57
+ @dataclass
58
+ class WideAndDeepNetOutput:
59
+ main_output: torch.Tensor
60
+ aux_output: torch.Tensor
61
+ main_loss: Optional[torch.Tensor] = None
62
+ aux_loss: Optional[torch.Tensor] = None
63
+ loss: Optional[torch.Tensor] = None
64
+
65
+ import torch.nn as nn
66
+ from huggingface_hub import PyTorchModelHubMixin
67
+
68
+ class WideAndDeepNet(nn.Module, PyTorchModelHubMixin):
69
+ def __init__(self):
70
+ super().__init__()
71
+ self.hidden1 = nn.Linear(6, 30)
72
+ self.hidden2 = nn.Linear(30, 30)
73
+ self.main_head = nn.Linear(35, 1)
74
+ self.aux_head = nn.Linear(30, 1)
75
+ self.main_loss_fn = nn.MSELoss(reduction='sum')
76
+ self.aux_loss_fn = nn.MSELoss(reduction='sum')
77
+
78
+ def forward(self, input_wide, input_deep, label=None):
79
+ act = torch.relu(self.hidden1(input_deep))
80
+ act = torch.relu(self.hidden2(act))
81
+ concat = torch.cat([input_wide, act], dim=1)
82
+ main_output = self.main_head(concat)
83
+ aux_output = self.aux_head(act)
84
+ if label is not None:
85
+ main_loss = self.main_loss_fn(main_output.squeeze(), label)
86
+ aux_loss = self.aux_loss_fn(aux_output.squeeze(), label)
87
+ loss = 0.9 * main_loss + 0.1 * aux_loss
88
+ return WideAndDeepNetOutput(main_output, aux_output, main_loss, aux_loss, loss)
89
+ else:
90
+ return WideAndDeepNetOutput(main_output, aux_output)
91
+
92
+ model = WideAndDeepNet.from_pretrained("sadhaklal/wide-and-deep-net-california-housing-v3")
93
+ model.to(device)
94
+ model.eval()
95
+
96
+ # Let's predict on 3 unseen examples from the test set:
97
+ print(f"Ground truth housing prices: {y_test.values[:3]}")
98
+ new = {
99
+ 'input_wide': torch.tensor(X_test.values[:3, :5], dtype=torch.float32),
100
+ 'input_deep': torch.tensor(X_test.values[:3, 2:], dtype=torch.float32)
101
+ }
102
+ new = {k: v.to(device) for k, v in new.items()}
103
+ with torch.no_grad():
104
+ output = model(**new)
105
+ print(f"Predicted housing prices: {output.main_output.squeeze()}")
106
+ ```
107
+
108
+ ## Metric
109
+
110
+ RMSE on the test set: 0.574
111
+
112
+ ---
113
+
114
+ This model has been pushed to the Hub using the [PyTorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.