--- base_model: google/pegasus-large tags: - generated_from_trainer datasets: - samsum metrics: - rouge model-index: - name: samsum_5535_pegasus-large results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: samsum type: samsum config: samsum split: validation args: samsum metrics: - name: Rouge1 type: rouge value: 0.5273 --- # samsum_5535_pegasus-large This model is a fine-tuned version of [google/pegasus-large](https://huggingface.co/google/pegasus-large) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 0.4847 - Rouge1: 0.5273 - Rouge2: 0.2794 - Rougel: 0.4378 - Rougelsum: 0.4376 - Gen Len: 22.6565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | 0.5641 | 4.34 | 500 | 0.5145 | 0.5069 | 0.2664 | 0.4229 | 0.4228 | 21.187 | | 0.4689 | 8.69 | 1000 | 0.4847 | 0.5273 | 0.2794 | 0.4378 | 0.4376 | 22.6565 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0