--- language: - en tags: - llm-rs - ggml pipeline_tag: text-generation datasets: - the_pile --- # GGML covnerted Models of [EleutherAI](https://huggingface.co/EleutherAI)'s GPT-J model ## Description GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
| Hyperparameter | Value | |----------------------|------------| | \\(n_{parameters}\\) | 6053381344 | | \\(n_{layers}\\) | 28* | | \\(d_{model}\\) | 4096 | | \\(d_{ff}\\) | 16384 | | \\(n_{heads}\\) | 16 | | \\(d_{head}\\) | 256 | | \\(n_{ctx}\\) | 2048 | | \\(n_{vocab}\\) | 50257/50400† (same tokenizer as GPT-2/3) | | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) | | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |

* Each layer consists of one feedforward block and one self attention block.

Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.

The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as GPT-2/GPT-3. ## Converted Models | Name | Based on | Type | Container | GGML Version | |:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|:-------|:------------|:---------------| | [gpt-j-6b-f16.bin](https://huggingface.co/rustformers/gpt-j-ggml/blob/main/gpt-j-6b-f16.bin) | [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) | F16 | GGML | V3 | | [gpt-j-6b-q4_0.bin](https://huggingface.co/rustformers/gpt-j-ggml/blob/main/gpt-j-6b-q4_0.bin) | [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) | Q4_0 | GGML | V3 | | [gpt-j-6b-q4_0-ggjt.bin](https://huggingface.co/rustformers/gpt-j-ggml/blob/main/gpt-j-6b-q4_0-ggjt.bin) | [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) | Q4_0 | GGJT | V3 | | [gpt-j-6b-q5_1-ggjt.bin](https://huggingface.co/rustformers/gpt-j-ggml/blob/main/gpt-j-6b-q5_1-ggjt.bin) | [EleutherAI/gpt-j-6b](https://huggingface.co/EleutherAI/gpt-j-6b) | Q5_1 | GGJT | V3 | ## Usage ### Python via [llm-rs](https://github.com/LLukas22/llm-rs-python): #### Installation Via pip: `pip install llm-rs` #### Run inference ```python from llm_rs import AutoModel #Load the model, define any model you like from the list above as the `model_file` model = AutoModel.from_pretrained("rustformers/gpt-j-ggml",model_file="gpt-j-6b-q4_0-ggjt.bin") #Generate print(model.generate("The meaning of life is")) ``` ### Rust via [Rustformers/llm](https://github.com/rustformers/llm): #### Installation ``` git clone --recurse-submodules https://github.com/rustformers/llm.git cd llm cargo build --release ``` #### Run inference ``` cargo run --release -- gptj infer -m path/to/model.bin -p "Tell me how cool the Rust programming language is:" ```