LLukas22 commited on
Commit
02ba2fe
·
1 Parent(s): 334e16a

Update README_TEMPLATE.md

Browse files
Files changed (1) hide show
  1. README_TEMPLATE.md +28 -64
README_TEMPLATE.md CHANGED
@@ -1,77 +1,41 @@
1
  ---
2
- license: bigscience-bloom-rail-1.0
3
  language:
4
- - ak
5
- - ar
6
- - as
7
- - bm
8
- - bn
9
- - ca
10
- - code
11
  - en
12
- - es
13
- - eu
14
- - fon
15
- - fr
16
- - gu
17
- - hi
18
- - id
19
- - ig
20
- - ki
21
- - kn
22
- - lg
23
- - ln
24
- - ml
25
- - mr
26
- - ne
27
- - nso
28
- - ny
29
- - or
30
- - pa
31
- - pt
32
- - rn
33
- - rw
34
- - sn
35
- - st
36
- - sw
37
- - ta
38
- - te
39
- - tn
40
- - ts
41
- - tum
42
- - tw
43
- - ur
44
- - vi
45
- - wo
46
- - xh
47
- - yo
48
- - zh
49
- - zu
50
- programming_language:
51
- - C
52
- - C++
53
- - C#
54
- - Go
55
- - Java
56
- - JavaScript
57
- - Lua
58
- - PHP
59
- - Python
60
- - Ruby
61
- - Rust
62
- - Scala
63
- - TypeScript
64
  tags:
65
  - llm-rs
66
  - ggml
67
  pipeline_tag: text-generation
 
 
68
  ---
69
 
70
- # GGML covnerted Models of [BigScience](https://huggingface.co/bigscience)'s Bloom models
71
 
72
  ## Description
73
 
74
- BLOOM is an autoregressive Large Language Model (LLM), trained to continue text from a prompt on vast amounts of text data using industrial-scale computational resources. As such, it is able to output coherent text in 46 languages and 13 programming languages that is hardly distinguishable from text written by humans. BLOOM can also be instructed to perform text tasks it hasn't been explicitly trained for, by casting them as text generation tasks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
 
77
  ## Converted Models
@@ -89,7 +53,7 @@ Via pip: `pip install llm-rs`
89
  from llm_rs import AutoModel
90
 
91
  #Load the model, define any model you like from the list above as the `model_file`
92
- model = AutoModel.from_pretrained("rustformers/bloom-ggml",model_file="bloom-3b-q4_0-ggjt.bin")
93
 
94
  #Generate
95
  print(model.generate("The meaning of life is"))
@@ -106,5 +70,5 @@ cargo build --release
106
 
107
  #### Run inference
108
  ```
109
- cargo run --release -- bloom infer -m path/to/model.bin -p "Tell me how cool the Rust programming language is:"
110
  ```
 
1
  ---
 
2
  language:
 
 
 
 
 
 
 
3
  - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  tags:
5
  - llm-rs
6
  - ggml
7
  pipeline_tag: text-generation
8
+ datasets:
9
+ - the_pile
10
  ---
11
 
12
+ # GGML covnerted Models of [EleutherAI](https://huggingface.co/EleutherAI)'s GPT-J model
13
 
14
  ## Description
15
 
16
+ GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
17
+
18
+ <figure>
19
+
20
+ | Hyperparameter | Value |
21
+ |----------------------|------------|
22
+ | \\(n_{parameters}\\) | 6053381344 |
23
+ | \\(n_{layers}\\) | 28&ast; |
24
+ | \\(d_{model}\\) | 4096 |
25
+ | \\(d_{ff}\\) | 16384 |
26
+ | \\(n_{heads}\\) | 16 |
27
+ | \\(d_{head}\\) | 256 |
28
+ | \\(n_{ctx}\\) | 2048 |
29
+ | \\(n_{vocab}\\) | 50257/50400&dagger; (same tokenizer as GPT-2/3) |
30
+ | Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
31
+ | RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
32
+ <figcaption><p><strong>&ast;</strong> Each layer consists of one feedforward block and one self attention block.</p>
33
+ <p><strong>&dagger;</strong> Although the embedding matrix has a size of 50400, only 50257 entries are used by the GPT-2 tokenizer.</p></figcaption></figure>
34
+
35
+ The model consists of 28 layers with a model dimension of 4096, and a feedforward dimension of 16384. The model
36
+ dimension is split into 16 heads, each with a dimension of 256. Rotary Position Embedding (RoPE) is applied to 64
37
+ dimensions of each head. The model is trained with a tokenization vocabulary of 50257, using the same set of BPEs as
38
+ GPT-2/GPT-3.
39
 
40
 
41
  ## Converted Models
 
53
  from llm_rs import AutoModel
54
 
55
  #Load the model, define any model you like from the list above as the `model_file`
56
+ model = AutoModel.from_pretrained("rustformers/gpt-j-ggml",model_file="gpt-j-6b-q4_0-ggjt.bin")
57
 
58
  #Generate
59
  print(model.generate("The meaning of life is"))
 
70
 
71
  #### Run inference
72
  ```
73
+ cargo run --release -- gptj infer -m path/to/model.bin -p "Tell me how cool the Rust programming language is:"
74
  ```