File size: 2,988 Bytes
341f3f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
library_name: transformers
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
datasets:
- minds14
metrics:
- wer
model-index:
- name: wav2vec2-minds14-en
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: minds14
type: minds14
config: en-US
split: None
args: en-US
metrics:
- name: Wer
type: wer
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-minds14-en
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 5.5729
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:------:|
| 5.3811 | 3.5088 | 100 | 6.8598 | 1.0006 |
| 4.9442 | 7.0175 | 200 | 6.6217 | 1.0018 |
| 4.6255 | 10.5263 | 300 | 6.2050 | 1.0 |
| 4.4037 | 14.0351 | 400 | 6.1160 | 1.0 |
| 4.1672 | 17.5439 | 500 | 5.7863 | 1.0 |
| 3.8786 | 21.0526 | 600 | 5.6219 | 1.0 |
| 3.6182 | 24.5614 | 700 | 5.4987 | 1.0 |
| 3.654 | 28.0702 | 800 | 5.6024 | 1.0 |
| 3.4135 | 31.5789 | 900 | 5.5648 | 1.0 |
| 3.3532 | 35.0877 | 1000 | 5.6507 | 1.0 |
| 3.344 | 38.5965 | 1100 | 5.5189 | 1.0 |
| 3.3233 | 42.1053 | 1200 | 5.6830 | 1.0 |
| 3.3983 | 45.6140 | 1300 | 5.5447 | 1.0 |
| 3.2433 | 49.1228 | 1400 | 5.5065 | 1.0 |
| 3.2082 | 52.6316 | 1500 | 5.4783 | 1.0 |
| 3.1958 | 56.1404 | 1600 | 5.5747 | 1.0 |
| 3.1756 | 59.6491 | 1700 | 5.5580 | 1.0 |
| 3.1757 | 63.1579 | 1800 | 5.5556 | 1.0 |
| 3.1758 | 66.6667 | 1900 | 5.6747 | 1.0 |
| 3.1373 | 70.1754 | 2000 | 5.5729 | 1.0 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.5.0+cu121
- Datasets 3.1.0
- Tokenizers 0.19.1
|