updating model peptriever_2023-06-23T16:07:24.508460
Browse files
README.md
CHANGED
@@ -4,12 +4,19 @@ license: mit
|
|
4 |
datasets:
|
5 |
- ronig/protein_binding_sequences
|
6 |
---
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
Usage
|
10 |
```python
|
|
|
|
|
|
|
11 |
tokenizer = AutoTokenizer.from_pretrained("ronig/protein_biencoder")
|
12 |
-
model =
|
13 |
model.eval()
|
14 |
|
15 |
peptide_sequence = "AAA"
|
@@ -24,4 +31,5 @@ with torch.no_grad():
|
|
24 |
print("distance: ", torch.norm(peptide_output - protein_output, p=2))
|
25 |
```
|
26 |
|
|
|
27 |
Model checkpint: `peptriever_2023-06-23T16:07:24.508460`
|
|
|
4 |
datasets:
|
5 |
- ronig/protein_binding_sequences
|
6 |
---
|
7 |
+
## Peptriever BiEncoder for Protein-Peptide Binding
|
8 |
+
The model and training process is outlined in [this application note](). Training code can be found [here](https://github.com/RoniGurvich/Peptriever).
|
9 |
+
|
10 |
+
For more details see the [application page](https://peptriever.app)
|
11 |
+
|
12 |
+
## Usage
|
13 |
|
|
|
14 |
```python
|
15 |
+
import torch
|
16 |
+
from transformers import AutoModel, AutoTokenizer
|
17 |
+
|
18 |
tokenizer = AutoTokenizer.from_pretrained("ronig/protein_biencoder")
|
19 |
+
model = AutoModel.from_pretrained("ronig/protein_biencoder", trust_remote_code=True)
|
20 |
model.eval()
|
21 |
|
22 |
peptide_sequence = "AAA"
|
|
|
31 |
print("distance: ", torch.norm(peptide_output - protein_output, p=2))
|
32 |
```
|
33 |
|
34 |
+
## Version
|
35 |
Model checkpint: `peptriever_2023-06-23T16:07:24.508460`
|