--- base_model: meta-llama/Llama-3.2-11B-Vision library_name: peft license: llama3.2 metrics: - bleu - rouge tags: - trl - sft - generated_from_trainer model-index: - name: Llama-3.2_sft results: [] --- # Llama-3.2_sft This model is a fine-tuned version of [meta-llama/Llama-3.2-11B-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.7029 - Bleu: 0.3190 - Rouge1: 0.6446 - Rouge2: 0.3444 - Rougel: 0.5512 - Bertscore Precision: 0.8782 - Bertscore Recall: 0.8935 - Bertscore F1: 0.8858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge1 | Rouge2 | Rougel | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:------:|:-------------------:|:----------------:|:------------:| | 1.7104 | 1.2403 | 100 | 1.7210 | 0.3168 | 0.6444 | 0.3460 | 0.5505 | 0.8774 | 0.8931 | 0.8852 | | 1.677 | 2.4806 | 200 | 1.7063 | 0.3191 | 0.6462 | 0.3472 | 0.5524 | 0.8781 | 0.8935 | 0.8857 | | 1.6343 | 3.7209 | 300 | 1.7020 | 0.3188 | 0.6448 | 0.3445 | 0.5513 | 0.8782 | 0.8934 | 0.8857 | | 1.6163 | 4.9612 | 400 | 1.7029 | 0.3190 | 0.6446 | 0.3444 | 0.5512 | 0.8782 | 0.8935 | 0.8858 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.2.0a0+81ea7a4 - Datasets 3.0.1 - Tokenizers 0.20.1