Update README.md
Browse files
README.md
CHANGED
@@ -7,31 +7,62 @@ datasets:
|
|
7 |
- oscar
|
8 |
- chitanka
|
9 |
- wikipedia
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
The compression was executed on Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/).
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
Here is how to use this model in PyTorch:
|
17 |
|
18 |
```python
|
19 |
>>> from transformers import AutoModel, AutoTokenizer
|
20 |
-
>>>
|
21 |
-
>>>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
>>> input_ids = tokenizer.encode("Здравей,", add_special_tokens=False, return_tensors='pt')
|
24 |
>>> output_ids = model.generate(
|
25 |
>>> input_ids,
|
26 |
>>> do_sample=True,
|
27 |
>>> max_length=50,
|
28 |
>>> top_p=0.92,
|
29 |
>>> pad_token_id=2,
|
30 |
-
>>> top_k=0
|
31 |
-
>>> )
|
32 |
|
33 |
>>> output = tokenizer.decode(output_ids[0])
|
34 |
-
>>>
|
|
|
|
|
|
|
|
|
|
|
35 |
>>> print(output)
|
36 |
|
37 |
Здравей, извинявай, но не мога да заспя.
|
@@ -39,3 +70,17 @@ Here is how to use this model in PyTorch:
|
|
39 |
— Почакай, Джини. Не мога да повярвам, че е възможно! Толкова искам да те видя.
|
40 |
— Обеща
|
41 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- oscar
|
8 |
- chitanka
|
9 |
- wikipedia
|
10 |
+
tags:
|
11 |
+
- torch
|
12 |
---
|
13 |
|
14 |
+
# GPT-2
|
15 |
+
|
16 |
+
Pretrained model on Bulgarian language using a causal language modeling (CLM) objective. It was introduced in
|
17 |
+
[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)
|
18 |
+
and first released at [this page](https://openai.com/blog/better-language-models/).
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
This is the **SMALL** version compressed via [progressive module replacing](https://arxiv.org/abs/2002.02925).
|
23 |
|
24 |
The compression was executed on Bulgarian text from [OSCAR](https://oscar-corpus.com/post/oscar-2019/), [Chitanka](https://chitanka.info/) and [Wikipedia](https://bg.wikipedia.org/).
|
25 |
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
You can use the raw model for:
|
29 |
+
- text generation
|
30 |
+
- auto-complete
|
31 |
+
- spelling correction
|
32 |
+
|
33 |
+
Or fine-tune it to a downstream task.
|
34 |
+
|
35 |
+
### How to use
|
36 |
+
|
37 |
Here is how to use this model in PyTorch:
|
38 |
|
39 |
```python
|
40 |
>>> from transformers import AutoModel, AutoTokenizer
|
41 |
+
>>>
|
42 |
+
>>> model_id = "rmihaylov/gpt2-small-theseus-bg"
|
43 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(model_id)
|
44 |
+
>>> model = AutoModel.from_pretrained(model_id, trust_remote_code=True)
|
45 |
+
|
46 |
+
>>> input_ids = tokenizer.encode(
|
47 |
+
>>> "Здравей,",
|
48 |
+
>>> add_special_tokens=False,
|
49 |
+
>>> return_tensors='pt')
|
50 |
|
|
|
51 |
>>> output_ids = model.generate(
|
52 |
>>> input_ids,
|
53 |
>>> do_sample=True,
|
54 |
>>> max_length=50,
|
55 |
>>> top_p=0.92,
|
56 |
>>> pad_token_id=2,
|
57 |
+
>>> top_k=0)
|
|
|
58 |
|
59 |
>>> output = tokenizer.decode(output_ids[0])
|
60 |
+
>>>
|
61 |
+
>>> output = output.replace('<|endoftext|>', '\n\n\n')
|
62 |
+
>>> output = output.replace('<|unknown|>', '')
|
63 |
+
>>> output = output.replace('▁', ' ')
|
64 |
+
>>> output = output.replace('<|n|>', '\n')
|
65 |
+
>>>
|
66 |
>>> print(output)
|
67 |
|
68 |
Здравей, извинявай, но не мога да заспя.
|
|
|
70 |
— Почакай, Джини. Не мога да повярвам, че е възможно! Толкова искам да те видя.
|
71 |
— Обеща
|
72 |
```
|
73 |
+
|
74 |
+
### Limitations and bias
|
75 |
+
|
76 |
+
As the openAI team themselves point out in their
|
77 |
+
[model card](https://github.com/openai/gpt-2/blob/master/model_card.md#out-of-scope-use-cases):
|
78 |
+
|
79 |
+
> Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases
|
80 |
+
> that require the generated text to be true.
|
81 |
+
>
|
82 |
+
> Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do
|
83 |
+
> not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a
|
84 |
+
> study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race,
|
85 |
+
> and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar
|
86 |
+
> levels of caution around use cases that are sensitive to biases around human attributes.
|