rishipatel92 commited on
Commit
5ecca5f
·
1 Parent(s): 5ce07d0

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.89 +/- 0.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6921cbb48961e5a3edb9dba4e61a9539ce22938fcd023a29be41ac6b6f16db43
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f879b98b280>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7f879b980a80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1674039973285527237,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVx/PPuscy7zz/RQ/Vx/PPuscy7zz/RQ/Vx/PPuscy7zz/RQ/Vx/PPuscy7zz/RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA01t4Pmq/sD8hwmU/nOXZv/cwur8CutO+p4R+P7g8zz+jIKE/monAv6zulb+9rii+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABXH88+6xzLvPP9FD+IwkC8QFyGu4N39btXH88+6xzLvPP9FD+IwkC8QFyGu4N39btXH88+6xzLvPP9FD+IwkC8QFyGu4N39btXH88+6xzLvPP9FD+IwkC8QFyGu4N39buUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.40453598 -0.02479406 0.58199996]\n [ 0.40453598 -0.02479406 0.58199996]\n [ 0.40453598 -0.02479406 0.58199996]\n [ 0.40453598 -0.02479406 0.58199996]]",
60
+ "desired_goal": "[[ 0.24253778 1.3808415 0.8974934 ]\n [-1.7023196 -1.4546193 -0.4135285 ]\n [ 0.9942116 1.6190405 1.2588085 ]\n [-1.5041993 -1.1713462 -0.16472907]]",
61
+ "observation": "[[ 0.40453598 -0.02479406 0.58199996 -0.01176513 -0.00410035 -0.00749105]\n [ 0.40453598 -0.02479406 0.58199996 -0.01176513 -0.00410035 -0.00749105]\n [ 0.40453598 -0.02479406 0.58199996 -0.01176513 -0.00410035 -0.00749105]\n [ 0.40453598 -0.02479406 0.58199996 -0.01176513 -0.00410035 -0.00749105]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8MefPWYS9D1uzYc9npHZvb1PgD09VIA95SLLPFJX5jz0IEA+pUP8PI6k5T2PTSc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.07801807 0.11917572 0.06630979]\n [-0.10623477 0.06265209 0.06266067]\n [ 0.02479691 0.02811781 0.1876257 ]\n [ 0.03079397 0.11213027 0.1633818 ]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI19tmKsSj+r+UhpRSlIwBbJRLMowBdJRHQKPHhx82Ji11fZQoaAZoCWgPQwjXh/VGrfD6v5SGlFKUaBVLMmgWR0Cjx0lvZRKpdX2UKGgGaAloD0MIbLHbZ5WZ9r+UhpRSlGgVSzJoFkdAo8cGweNkv3V9lChoBmgJaA9DCNi2KLNBJvy/lIaUUpRoFUsyaBZHQKPGw76pHZt1fZQoaAZoCWgPQwieXinLEAf6v5SGlFKUaBVLMmgWR0CjyIyrgflqdX2UKGgGaAloD0MIWDofniWI8b+UhpRSlGgVSzJoFkdAo8hO3WnTAnV9lChoBmgJaA9DCJbQXRJnhfK/lIaUUpRoFUsyaBZHQKPIDDxb0OF1fZQoaAZoCWgPQwgUrkfhetT6v5SGlFKUaBVLMmgWR0Cjx8kC3gDSdX2UKGgGaAloD0MIOxxdpbvr7b+UhpRSlGgVSzJoFkdAo8mL8zhxYXV9lChoBmgJaA9DCMh5/x8njPa/lIaUUpRoFUsyaBZHQKPJTh/iHZd1fZQoaAZoCWgPQwjS5c3hWi32v5SGlFKUaBVLMmgWR0CjyQtcfNiZdX2UKGgGaAloD0MILev+sRDd87+UhpRSlGgVSzJoFkdAo8jIWN3np3V9lChoBmgJaA9DCPjfSnZsBPW/lIaUUpRoFUsyaBZHQKPKnxri2lV1fZQoaAZoCWgPQwgUtMnhk870v5SGlFKUaBVLMmgWR0CjymEzfrKOdX2UKGgGaAloD0MIuK8D54zo+L+UhpRSlGgVSzJoFkdAo8oeo5xR23V9lChoBmgJaA9DCGDMlqyK8PO/lIaUUpRoFUsyaBZHQKPJ24GUwBZ1fZQoaAZoCWgPQwgbhSSzekf5v5SGlFKUaBVLMmgWR0Cjy5c3++/QdX2UKGgGaAloD0MIMQisHFrk8b+UhpRSlGgVSzJoFkdAo8tZTCLuQnV9lChoBmgJaA9DCFXa4hqfCfG/lIaUUpRoFUsyaBZHQKPLFmCiAUd1fZQoaAZoCWgPQwhcc0f/y7Xuv5SGlFKUaBVLMmgWR0CjytN70Fr3dX2UKGgGaAloD0MIG6Gfqdft87+UhpRSlGgVSzJoFkdAo8ydXeWOZXV9lChoBmgJaA9DCKtdE9Iag/W/lIaUUpRoFUsyaBZHQKPMX5uZThp1fZQoaAZoCWgPQwhjCACOPXvwv5SGlFKUaBVLMmgWR0CjzB0hV2iddX2UKGgGaAloD0MIFY4glWKH8L+UhpRSlGgVSzJoFkdAo8vaOR1YAHV9lChoBmgJaA9DCJdSl4xjpO+/lIaUUpRoFUsyaBZHQKPNsmBOHnF1fZQoaAZoCWgPQwjNyCB3EeYBwJSGlFKUaBVLMmgWR0CjzXTgEU0vdX2UKGgGaAloD0MIud42UyFe87+UhpRSlGgVSzJoFkdAo80yeK8+R3V9lChoBmgJaA9DCLJl+boM/+q/lIaUUpRoFUsyaBZHQKPM74jbBXV1fZQoaAZoCWgPQwhKQbeXNAbyv5SGlFKUaBVLMmgWR0Cjzrd2ovSMdX2UKGgGaAloD0MIStQLPs3J8L+UhpRSlGgVSzJoFkdAo855wGW2PXV9lChoBmgJaA9DCKERbFz/Lvy/lIaUUpRoFUsyaBZHQKPONw6QvHt1fZQoaAZoCWgPQwhWt3pOel/zv5SGlFKUaBVLMmgWR0CjzfQFTvRadX2UKGgGaAloD0MI2xg74SU4/b+UhpRSlGgVSzJoFkdAo8++T1TR6XV9lChoBmgJaA9DCFlMbD6uDfy/lIaUUpRoFUsyaBZHQKPPgIldC3R1fZQoaAZoCWgPQwjFVtC0xEryv5SGlFKUaBVLMmgWR0Cjzz3buc+adX2UKGgGaAloD0MIoYFYNnPI9L+UhpRSlGgVSzJoFkdAo876uGKyfXV9lChoBmgJaA9DCAdhbvdyH+e/lIaUUpRoFUsyaBZHQKPQwXl8w6B1fZQoaAZoCWgPQwjLgok/inryv5SGlFKUaBVLMmgWR0Cj0IOkDZDidX2UKGgGaAloD0MIUHEceLWc8r+UhpRSlGgVSzJoFkdAo9BA176YV3V9lChoBmgJaA9DCC2Y+KOo8/i/lIaUUpRoFUsyaBZHQKPP/Zha1Tl1fZQoaAZoCWgPQwg/G7luSjn7v5SGlFKUaBVLMmgWR0Cj0bcbR4QjdX2UKGgGaAloD0MIVDiCVIod77+UhpRSlGgVSzJoFkdAo9F5dB0IT3V9lChoBmgJaA9DCJHRAUnYN+q/lIaUUpRoFUsyaBZHQKPRNsrupjt1fZQoaAZoCWgPQwgW+8vuycPtv5SGlFKUaBVLMmgWR0Cj0POwPiDNdX2UKGgGaAloD0MImzv6X65F6L+UhpRSlGgVSzJoFkdAo9KyTINmUXV9lChoBmgJaA9DCMA9z582qvK/lIaUUpRoFUsyaBZHQKPSdKqXF991fZQoaAZoCWgPQwjaykv+J3/nv5SGlFKUaBVLMmgWR0Cj0jIT4+KTdX2UKGgGaAloD0MIPBIvT+cK8b+UhpRSlGgVSzJoFkdAo9HvEKmbb3V9lChoBmgJaA9DCLDna5bLBvO/lIaUUpRoFUsyaBZHQKPTre67NB51fZQoaAZoCWgPQwjy6bEtA870v5SGlFKUaBVLMmgWR0Cj03AUUO/ddX2UKGgGaAloD0MI1cqEX+pn7L+UhpRSlGgVSzJoFkdAo9MthmXgL3V9lChoBmgJaA9DCCNOJ9nq8ui/lIaUUpRoFUsyaBZHQKPS6pT/ACZ1fZQoaAZoCWgPQwjJrN7hdmjpv5SGlFKUaBVLMmgWR0Cj1KuFpPAPdX2UKGgGaAloD0MIX5oiwOmd9b+UhpRSlGgVSzJoFkdAo9Rtz2exwHV9lChoBmgJaA9DCIAqbtxiPvG/lIaUUpRoFUsyaBZHQKPUKxoqTbF1fZQoaAZoCWgPQwgct5ifG5rxv5SGlFKUaBVLMmgWR0Cj0+f5ULlWdX2UKGgGaAloD0MINlmjHqKR8L+UhpRSlGgVSzJoFkdAo9WmYa5wwXV9lChoBmgJaA9DCIxn0NA/wfC/lIaUUpRoFUsyaBZHQKPVaJTER8N1fZQoaAZoCWgPQwjLZDiez4D0v5SGlFKUaBVLMmgWR0Cj1SX/5tWNdX2UKGgGaAloD0MI5QtaSMBo6r+UhpRSlGgVSzJoFkdAo9TjCBPKuHV9lChoBmgJaA9DCNL9nIL8rPW/lIaUUpRoFUsyaBZHQKPWtB68g6l1fZQoaAZoCWgPQwjsbMg/M4j3v5SGlFKUaBVLMmgWR0Cj1nZdv864dX2UKGgGaAloD0MIYYpyafxC8L+UhpRSlGgVSzJoFkdAo9YzrcCYC3V9lChoBmgJaA9DCO1I9Z1flOO/lIaUUpRoFUsyaBZHQKPV8GVRk3F1fZQoaAZoCWgPQwiUiPAvgsbyv5SGlFKUaBVLMmgWR0Cj19u8scyWdX2UKGgGaAloD0MIQX42ct2U8b+UhpRSlGgVSzJoFkdAo9efIbOu73V9lChoBmgJaA9DCBoWo661d/C/lIaUUpRoFUsyaBZHQKPXXGEwnIB1fZQoaAZoCWgPQwj+mxcnvhr1v5SGlFKUaBVLMmgWR0Cj1xlWn0kGdX2UKGgGaAloD0MIZk0s8BXd6r+UhpRSlGgVSzJoFkdAo9kHLRrrPnV9lChoBmgJaA9DCLLYJhWNNee/lIaUUpRoFUsyaBZHQKPYyVopQUJ1fZQoaAZoCWgPQwjdCmE1lrDrv5SGlFKUaBVLMmgWR0Cj2IeQU5+6dX2UKGgGaAloD0MIo4/5gECn8b+UhpRSlGgVSzJoFkdAo9hEr5IpY3V9lChoBmgJaA9DCBYTm49rw+a/lIaUUpRoFUsyaBZHQKPaB349HMF1fZQoaAZoCWgPQwiFRNrGnyjsv5SGlFKUaBVLMmgWR0Cj2cm5UcXFdX2UKGgGaAloD0MINiGtMehE9r+UhpRSlGgVSzJoFkdAo9mHMW43FXV9lChoBmgJaA9DCF/Rrdf0IOO/lIaUUpRoFUsyaBZHQKPZRCzC1qp1fZQoaAZoCWgPQwgzjSYXY2Div5SGlFKUaBVLMmgWR0Cj2wwUpNKzdX2UKGgGaAloD0MILzNslPXb8b+UhpRSlGgVSzJoFkdAo9rOL74zrXV9lChoBmgJaA9DCFGiJY+nJfG/lIaUUpRoFUsyaBZHQKPai2R7qpt1fZQoaAZoCWgPQwhbmfBL/bzrv5SGlFKUaBVLMmgWR0Cj2khsqJ/HdX2UKGgGaAloD0MI5xn7ko2H6L+UhpRSlGgVSzJoFkdAo9wQ57w8XHV9lChoBmgJaA9DCIjyBS0k4Oa/lIaUUpRoFUsyaBZHQKPb0zrNW2h1fZQoaAZoCWgPQwhmogip29nlv5SGlFKUaBVLMmgWR0Cj25CHh0hedX2UKGgGaAloD0MIgpGXNbHA47+UhpRSlGgVSzJoFkdAo9tNlPJq7HV9lChoBmgJaA9DCC9P54pSwuK/lIaUUpRoFUsyaBZHQKPdF+85CF91fZQoaAZoCWgPQwgxQni0cUTlv5SGlFKUaBVLMmgWR0Cj3Nol2NeddX2UKGgGaAloD0MIb2OzI9X37L+UhpRSlGgVSzJoFkdAo9yXYcvM83V9lChoBmgJaA9DCIlfsYaL3PC/lIaUUpRoFUsyaBZHQKPcVGAkLQZ1fZQoaAZoCWgPQwjcSNkiabfhv5SGlFKUaBVLMmgWR0Cj3iMGgSOBdX2UKGgGaAloD0MIg04IHXQJ5r+UhpRSlGgVSzJoFkdAo93lT72tdXV9lChoBmgJaA9DCEeTizGwDuy/lIaUUpRoFUsyaBZHQKPdosSTQmh1fZQoaAZoCWgPQwjp1mt6UNDjv5SGlFKUaBVLMmgWR0Cj3V/Q0GeMdX2UKGgGaAloD0MIl/26051n8b+UhpRSlGgVSzJoFkdAo98ZekYXPHV9lChoBmgJaA9DCFfMCG8Pwua/lIaUUpRoFUsyaBZHQKPe26Lfk3l1fZQoaAZoCWgPQwgAUps4ud/fv5SGlFKUaBVLMmgWR0Cj3pj9OymidX2UKGgGaAloD0MIg04IHXQJ6L+UhpRSlGgVSzJoFkdAo95VwHZ9NXV9lChoBmgJaA9DCBFvnX+7bOy/lIaUUpRoFUsyaBZHQKPgEPnSv1V1fZQoaAZoCWgPQwjyJOmayTfnv5SGlFKUaBVLMmgWR0Cj39NCJGe+dX2UKGgGaAloD0MIsW1RZoPM6r+UhpRSlGgVSzJoFkdAo9+Qv6CUYHV9lChoBmgJaA9DCPQZUG9GzeO/lIaUUpRoFUsyaBZHQKPfTcmjTKF1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88aed948b9ef8d762c2c7b0a6138c250084201bed44b6cb77fffdb57050054e9
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:974b6d4cb46259f94105e15a4443eef9ca8785ee05be128a55b44f7161da65be
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f879b98b280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f879b980a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674039973285527237, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVx/PPuscy7zz/RQ/Vx/PPuscy7zz/RQ/Vx/PPuscy7zz/RQ/Vx/PPuscy7zz/RQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA01t4Pmq/sD8hwmU/nOXZv/cwur8CutO+p4R+P7g8zz+jIKE/monAv6zulb+9rii+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABXH88+6xzLvPP9FD+IwkC8QFyGu4N39btXH88+6xzLvPP9FD+IwkC8QFyGu4N39btXH88+6xzLvPP9FD+IwkC8QFyGu4N39btXH88+6xzLvPP9FD+IwkC8QFyGu4N39buUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40453598 -0.02479406 0.58199996]\n [ 0.40453598 -0.02479406 0.58199996]\n [ 0.40453598 -0.02479406 0.58199996]\n [ 0.40453598 -0.02479406 0.58199996]]", "desired_goal": "[[ 0.24253778 1.3808415 0.8974934 ]\n [-1.7023196 -1.4546193 -0.4135285 ]\n [ 0.9942116 1.6190405 1.2588085 ]\n [-1.5041993 -1.1713462 -0.16472907]]", "observation": "[[ 0.40453598 -0.02479406 0.58199996 -0.01176513 -0.00410035 -0.00749105]\n [ 0.40453598 -0.02479406 0.58199996 -0.01176513 -0.00410035 -0.00749105]\n [ 0.40453598 -0.02479406 0.58199996 -0.01176513 -0.00410035 -0.00749105]\n [ 0.40453598 -0.02479406 0.58199996 -0.01176513 -0.00410035 -0.00749105]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8MefPWYS9D1uzYc9npHZvb1PgD09VIA95SLLPFJX5jz0IEA+pUP8PI6k5T2PTSc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07801807 0.11917572 0.06630979]\n [-0.10623477 0.06265209 0.06266067]\n [ 0.02479691 0.02811781 0.1876257 ]\n [ 0.03079397 0.11213027 0.1633818 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI19tmKsSj+r+UhpRSlIwBbJRLMowBdJRHQKPHhx82Ji11fZQoaAZoCWgPQwjXh/VGrfD6v5SGlFKUaBVLMmgWR0Cjx0lvZRKpdX2UKGgGaAloD0MIbLHbZ5WZ9r+UhpRSlGgVSzJoFkdAo8cGweNkv3V9lChoBmgJaA9DCNi2KLNBJvy/lIaUUpRoFUsyaBZHQKPGw76pHZt1fZQoaAZoCWgPQwieXinLEAf6v5SGlFKUaBVLMmgWR0CjyIyrgflqdX2UKGgGaAloD0MIWDofniWI8b+UhpRSlGgVSzJoFkdAo8hO3WnTAnV9lChoBmgJaA9DCJbQXRJnhfK/lIaUUpRoFUsyaBZHQKPIDDxb0OF1fZQoaAZoCWgPQwgUrkfhetT6v5SGlFKUaBVLMmgWR0Cjx8kC3gDSdX2UKGgGaAloD0MIOxxdpbvr7b+UhpRSlGgVSzJoFkdAo8mL8zhxYXV9lChoBmgJaA9DCMh5/x8njPa/lIaUUpRoFUsyaBZHQKPJTh/iHZd1fZQoaAZoCWgPQwjS5c3hWi32v5SGlFKUaBVLMmgWR0CjyQtcfNiZdX2UKGgGaAloD0MILev+sRDd87+UhpRSlGgVSzJoFkdAo8jIWN3np3V9lChoBmgJaA9DCPjfSnZsBPW/lIaUUpRoFUsyaBZHQKPKnxri2lV1fZQoaAZoCWgPQwgUtMnhk870v5SGlFKUaBVLMmgWR0CjymEzfrKOdX2UKGgGaAloD0MIuK8D54zo+L+UhpRSlGgVSzJoFkdAo8oeo5xR23V9lChoBmgJaA9DCGDMlqyK8PO/lIaUUpRoFUsyaBZHQKPJ24GUwBZ1fZQoaAZoCWgPQwgbhSSzekf5v5SGlFKUaBVLMmgWR0Cjy5c3++/QdX2UKGgGaAloD0MIMQisHFrk8b+UhpRSlGgVSzJoFkdAo8tZTCLuQnV9lChoBmgJaA9DCFXa4hqfCfG/lIaUUpRoFUsyaBZHQKPLFmCiAUd1fZQoaAZoCWgPQwhcc0f/y7Xuv5SGlFKUaBVLMmgWR0CjytN70Fr3dX2UKGgGaAloD0MIG6Gfqdft87+UhpRSlGgVSzJoFkdAo8ydXeWOZXV9lChoBmgJaA9DCKtdE9Iag/W/lIaUUpRoFUsyaBZHQKPMX5uZThp1fZQoaAZoCWgPQwhjCACOPXvwv5SGlFKUaBVLMmgWR0CjzB0hV2iddX2UKGgGaAloD0MIFY4glWKH8L+UhpRSlGgVSzJoFkdAo8vaOR1YAHV9lChoBmgJaA9DCJdSl4xjpO+/lIaUUpRoFUsyaBZHQKPNsmBOHnF1fZQoaAZoCWgPQwjNyCB3EeYBwJSGlFKUaBVLMmgWR0CjzXTgEU0vdX2UKGgGaAloD0MIud42UyFe87+UhpRSlGgVSzJoFkdAo80yeK8+R3V9lChoBmgJaA9DCLJl+boM/+q/lIaUUpRoFUsyaBZHQKPM74jbBXV1fZQoaAZoCWgPQwhKQbeXNAbyv5SGlFKUaBVLMmgWR0Cjzrd2ovSMdX2UKGgGaAloD0MIStQLPs3J8L+UhpRSlGgVSzJoFkdAo855wGW2PXV9lChoBmgJaA9DCKERbFz/Lvy/lIaUUpRoFUsyaBZHQKPONw6QvHt1fZQoaAZoCWgPQwhWt3pOel/zv5SGlFKUaBVLMmgWR0CjzfQFTvRadX2UKGgGaAloD0MI2xg74SU4/b+UhpRSlGgVSzJoFkdAo8++T1TR6XV9lChoBmgJaA9DCFlMbD6uDfy/lIaUUpRoFUsyaBZHQKPPgIldC3R1fZQoaAZoCWgPQwjFVtC0xEryv5SGlFKUaBVLMmgWR0Cjzz3buc+adX2UKGgGaAloD0MIoYFYNnPI9L+UhpRSlGgVSzJoFkdAo876uGKyfXV9lChoBmgJaA9DCAdhbvdyH+e/lIaUUpRoFUsyaBZHQKPQwXl8w6B1fZQoaAZoCWgPQwjLgok/inryv5SGlFKUaBVLMmgWR0Cj0IOkDZDidX2UKGgGaAloD0MIUHEceLWc8r+UhpRSlGgVSzJoFkdAo9BA176YV3V9lChoBmgJaA9DCC2Y+KOo8/i/lIaUUpRoFUsyaBZHQKPP/Zha1Tl1fZQoaAZoCWgPQwg/G7luSjn7v5SGlFKUaBVLMmgWR0Cj0bcbR4QjdX2UKGgGaAloD0MIVDiCVIod77+UhpRSlGgVSzJoFkdAo9F5dB0IT3V9lChoBmgJaA9DCJHRAUnYN+q/lIaUUpRoFUsyaBZHQKPRNsrupjt1fZQoaAZoCWgPQwgW+8vuycPtv5SGlFKUaBVLMmgWR0Cj0POwPiDNdX2UKGgGaAloD0MImzv6X65F6L+UhpRSlGgVSzJoFkdAo9KyTINmUXV9lChoBmgJaA9DCMA9z582qvK/lIaUUpRoFUsyaBZHQKPSdKqXF991fZQoaAZoCWgPQwjaykv+J3/nv5SGlFKUaBVLMmgWR0Cj0jIT4+KTdX2UKGgGaAloD0MIPBIvT+cK8b+UhpRSlGgVSzJoFkdAo9HvEKmbb3V9lChoBmgJaA9DCLDna5bLBvO/lIaUUpRoFUsyaBZHQKPTre67NB51fZQoaAZoCWgPQwjy6bEtA870v5SGlFKUaBVLMmgWR0Cj03AUUO/ddX2UKGgGaAloD0MI1cqEX+pn7L+UhpRSlGgVSzJoFkdAo9MthmXgL3V9lChoBmgJaA9DCCNOJ9nq8ui/lIaUUpRoFUsyaBZHQKPS6pT/ACZ1fZQoaAZoCWgPQwjJrN7hdmjpv5SGlFKUaBVLMmgWR0Cj1KuFpPAPdX2UKGgGaAloD0MIX5oiwOmd9b+UhpRSlGgVSzJoFkdAo9Rtz2exwHV9lChoBmgJaA9DCIAqbtxiPvG/lIaUUpRoFUsyaBZHQKPUKxoqTbF1fZQoaAZoCWgPQwgct5ifG5rxv5SGlFKUaBVLMmgWR0Cj0+f5ULlWdX2UKGgGaAloD0MINlmjHqKR8L+UhpRSlGgVSzJoFkdAo9WmYa5wwXV9lChoBmgJaA9DCIxn0NA/wfC/lIaUUpRoFUsyaBZHQKPVaJTER8N1fZQoaAZoCWgPQwjLZDiez4D0v5SGlFKUaBVLMmgWR0Cj1SX/5tWNdX2UKGgGaAloD0MI5QtaSMBo6r+UhpRSlGgVSzJoFkdAo9TjCBPKuHV9lChoBmgJaA9DCNL9nIL8rPW/lIaUUpRoFUsyaBZHQKPWtB68g6l1fZQoaAZoCWgPQwjsbMg/M4j3v5SGlFKUaBVLMmgWR0Cj1nZdv864dX2UKGgGaAloD0MIYYpyafxC8L+UhpRSlGgVSzJoFkdAo9YzrcCYC3V9lChoBmgJaA9DCO1I9Z1flOO/lIaUUpRoFUsyaBZHQKPV8GVRk3F1fZQoaAZoCWgPQwiUiPAvgsbyv5SGlFKUaBVLMmgWR0Cj19u8scyWdX2UKGgGaAloD0MIQX42ct2U8b+UhpRSlGgVSzJoFkdAo9efIbOu73V9lChoBmgJaA9DCBoWo661d/C/lIaUUpRoFUsyaBZHQKPXXGEwnIB1fZQoaAZoCWgPQwj+mxcnvhr1v5SGlFKUaBVLMmgWR0Cj1xlWn0kGdX2UKGgGaAloD0MIZk0s8BXd6r+UhpRSlGgVSzJoFkdAo9kHLRrrPnV9lChoBmgJaA9DCLLYJhWNNee/lIaUUpRoFUsyaBZHQKPYyVopQUJ1fZQoaAZoCWgPQwjdCmE1lrDrv5SGlFKUaBVLMmgWR0Cj2IeQU5+6dX2UKGgGaAloD0MIo4/5gECn8b+UhpRSlGgVSzJoFkdAo9hEr5IpY3V9lChoBmgJaA9DCBYTm49rw+a/lIaUUpRoFUsyaBZHQKPaB349HMF1fZQoaAZoCWgPQwiFRNrGnyjsv5SGlFKUaBVLMmgWR0Cj2cm5UcXFdX2UKGgGaAloD0MINiGtMehE9r+UhpRSlGgVSzJoFkdAo9mHMW43FXV9lChoBmgJaA9DCF/Rrdf0IOO/lIaUUpRoFUsyaBZHQKPZRCzC1qp1fZQoaAZoCWgPQwgzjSYXY2Div5SGlFKUaBVLMmgWR0Cj2wwUpNKzdX2UKGgGaAloD0MILzNslPXb8b+UhpRSlGgVSzJoFkdAo9rOL74zrXV9lChoBmgJaA9DCFGiJY+nJfG/lIaUUpRoFUsyaBZHQKPai2R7qpt1fZQoaAZoCWgPQwhbmfBL/bzrv5SGlFKUaBVLMmgWR0Cj2khsqJ/HdX2UKGgGaAloD0MI5xn7ko2H6L+UhpRSlGgVSzJoFkdAo9wQ57w8XHV9lChoBmgJaA9DCIjyBS0k4Oa/lIaUUpRoFUsyaBZHQKPb0zrNW2h1fZQoaAZoCWgPQwhmogip29nlv5SGlFKUaBVLMmgWR0Cj25CHh0hedX2UKGgGaAloD0MIgpGXNbHA47+UhpRSlGgVSzJoFkdAo9tNlPJq7HV9lChoBmgJaA9DCC9P54pSwuK/lIaUUpRoFUsyaBZHQKPdF+85CF91fZQoaAZoCWgPQwgxQni0cUTlv5SGlFKUaBVLMmgWR0Cj3Nol2NeddX2UKGgGaAloD0MIb2OzI9X37L+UhpRSlGgVSzJoFkdAo9yXYcvM83V9lChoBmgJaA9DCIlfsYaL3PC/lIaUUpRoFUsyaBZHQKPcVGAkLQZ1fZQoaAZoCWgPQwjcSNkiabfhv5SGlFKUaBVLMmgWR0Cj3iMGgSOBdX2UKGgGaAloD0MIg04IHXQJ5r+UhpRSlGgVSzJoFkdAo93lT72tdXV9lChoBmgJaA9DCEeTizGwDuy/lIaUUpRoFUsyaBZHQKPdosSTQmh1fZQoaAZoCWgPQwjp1mt6UNDjv5SGlFKUaBVLMmgWR0Cj3V/Q0GeMdX2UKGgGaAloD0MIl/26051n8b+UhpRSlGgVSzJoFkdAo98ZekYXPHV9lChoBmgJaA9DCFfMCG8Pwua/lIaUUpRoFUsyaBZHQKPe26Lfk3l1fZQoaAZoCWgPQwgAUps4ud/fv5SGlFKUaBVLMmgWR0Cj3pj9OymidX2UKGgGaAloD0MIg04IHXQJ6L+UhpRSlGgVSzJoFkdAo95VwHZ9NXV9lChoBmgJaA9DCBFvnX+7bOy/lIaUUpRoFUsyaBZHQKPgEPnSv1V1fZQoaAZoCWgPQwjyJOmayTfnv5SGlFKUaBVLMmgWR0Cj39NCJGe+dX2UKGgGaAloD0MIsW1RZoPM6r+UhpRSlGgVSzJoFkdAo9+Qv6CUYHV9lChoBmgJaA9DCPQZUG9GzeO/lIaUUpRoFUsyaBZHQKPfTcmjTKF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (623 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.8949694131501019, "std_reward": 0.2897869393265723, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T11:53:39.014083"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:065cb53f21da4f0c552cbccfdf70c5230b208507c5e624f054c4372004273947
3
+ size 3212