File size: 8,192 Bytes
2be40b8 7f343d7 2be40b8 7f343d7 2be40b8 7f343d7 5931fb8 7f343d7 5931fb8 7f343d7 5931fb8 7f343d7 5931fb8 7f343d7 5931fb8 7f343d7 5931fb8 7f343d7 5931fb8 2be40b8 72af199 2be40b8 f7c7127 2be40b8 3422b00 72af199 4ffafa7 3422b00 72af199 3422b00 2be40b8 3422b00 2be40b8 72af199 3422b00 2be40b8 3422b00 2be40b8 3422b00 2be40b8 3422b00 2be40b8 7f343d7 5931fb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
---
language:
- ja
- en
license: llama2
datasets:
- mc4
- wikipedia
- EleutherAI/pile
- oscar-corpus/colossal-oscar-1.0
- cc100
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
inference: false
model-index:
- name: youri-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 49.06
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 74.89
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.22
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 36.03
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 71.82
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.64
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=rinna/youri-7b
name: Open LLM Leaderboard
base_model: meta-llama/Llama-2-7b-hf
---
# `rinna/youri-7b`
![rinna-icon](./rinna.png)
# Overview
We conduct continual pre-training of [llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) on **40B** tokens from a mixture of Japanese and English datasets. The continual pre-training significantly improves the model's performance on Japanese tasks.
The name `youri` comes from the Japanese word [`妖狸/ようり/Youri`](https://ja.wikipedia.org/wiki/%E5%8C%96%E3%81%91%E7%8B%B8), which is a kind of Japanese mythical creature ([`妖怪/ようかい/Youkai`](https://ja.wikipedia.org/wiki/%E5%A6%96%E6%80%AA)).
* **Library**
The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox).
* **Model architecture**
A 32-layer, 4096-hidden-size transformer-based language model. Refer to the [llama2 paper](https://arxiv.org/abs/2307.09288) for architecture details.
* **Continual pre-training**
The model was initialized with the [llama2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) model and continually trained on around **40B** tokens from a mixture of the following corpora
- [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz)
- [Japanese C4](https://huggingface.co/datasets/mc4)
- [Japanese OSCAR](https://huggingface.co/datasets/oscar-corpus/colossal-oscar-1.0)
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
- [Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
- rinna curated Japanese dataset
* **Contributors**
- [Tianyu Zhao](https://huggingface.co/tianyuz)
- [Akio Kaga](https://huggingface.co/rakaga)
- [Kei Sawada](https://huggingface.co/keisawada)
---
# Benchmarking
Please refer to [rinna's LM benchmark page](https://rinnakk.github.io/research/benchmarks/lm/index.html).
---
# How to use the model
~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("rinna/youri-7b")
model = AutoModelForCausalLM.from_pretrained("rinna/youri-7b")
if torch.cuda.is_available():
model = model.to("cuda")
text = "西田幾多郎は、"
token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt")
with torch.no_grad():
output_ids = model.generate(
token_ids.to(model.device),
max_new_tokens=200,
min_new_tokens=200,
do_sample=True,
temperature=1.0,
top_p=0.95,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id
)
output = tokenizer.decode(output_ids.tolist()[0])
print(output)
"""
西田幾多郎は、プラトンの復権を主張し、対する従来の西洋哲学は、近代の合理主義哲学に委ね、「従来の哲学は破 壊されてしまった」と述べている。 西田幾多郎は、西洋近代哲学の「徹底的な検討」を拒んだ。それは、「現代的理解の脆弱性を補う筈の、従来のヨーロッパに伝わる哲学的な方法では到底それができなかったからである」とい
"""
~~~~
---
# Tokenization
The model uses the original llama-2 tokenizer.
---
# How to cite
```bibtex
@misc{rinna-youri-7b,
title = {rinna/youri-7b},
author = {Zhao, Tianyu and Kaga, Akio and Sawada, Kei},
url = {https://huggingface.co/rinna/youri-7b}
}
@inproceedings{sawada2024release,
title = {Release of Pre-Trained Models for the {J}apanese Language},
author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
month = {5},
year = {2024},
pages = {13898--13905},
url = {https://aclanthology.org/2024.lrec-main.1213},
note = {\url{https://arxiv.org/abs/2404.01657}}
}
```
---
# References
```bibtex
@software{gpt-neox-library,
title = {{GPT}-{N}eo{X}: Large Scale Autoregressive Language Modeling in {P}y{T}orch},
author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
doi = {10.5281/zenodo.5879544},
month = {8},
year = {2021},
version = {0.0.1},
url = {https://www.github.com/eleutherai/gpt-neox}
}
```
---
# License
[The llama2 license](https://ai.meta.com/llama/license/)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_rinna__youri-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |47.11|
|AI2 Reasoning Challenge (25-Shot)|49.06|
|HellaSwag (10-Shot) |74.89|
|MMLU (5-Shot) |42.22|
|TruthfulQA (0-shot) |36.03|
|Winogrande (5-shot) |71.82|
|GSM8k (5-shot) | 8.64| |