File size: 8,899 Bytes
e6afb9b
54be623
e6afb9b
02f81ad
 
54be623
 
 
 
3ed6cea
e6afb9b
54be623
 
 
02f81ad
 
54be623
 
 
b3feabb
02f81ad
21ea3aa
02f81ad
 
 
54be623
 
 
 
02f81ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c77041
02f81ad
 
 
 
 
 
 
 
fade230
02f81ad
 
 
 
 
 
 
 
 
 
 
 
 
 
1c77041
02f81ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fade230
97d380d
fade230
 
 
97d380d
fade230
 
 
 
 
 
 
 
97d380d
 
 
fade230
97d380d
fade230
 
 
54be623
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
thumbnail: https://github.com/rinnakk/japanese-pretrained-models/blob/master/rinna.png
license: mit
datasets:
- Anthropic/hh-rlhf
language:
- ja
- en
inference: false
base_model: rinna/bilingual-gpt-neox-4b
---

# bilingual-gpt-neox-4b-instruction-sft

![rinna-icon](./rinna.png)

---
# Update

- **2023/08/02** We uploaded the newly trained `rinna/bilingual-gpt-neox-4b-instruction-sft` with the MIT license.
  - Please refrain from using the previous model released on 2023/07/31 for commercial purposes if you have already downloaded it.
  - The new model released on 2023/08/02 is built from datasets with less strict licenses and has better evaluation performance, so we suggest using the new model.
  - For reference, we provide the MD5 checksum values for the `pytorch_model.bin` files of the previous and current models.
    -  2023/07/31 model: `edf190a323c0ae63f71476700fb0b462`
    -  2023/08/02 model: `de72aa5b66beee7b65783c96f687d186`
- **2023/07/31** In the previously released `rinna/bilingual-gpt-neox-4b-instruction-sft`, we found that part of the training data (i.e. Openchat ShareGPT4 and WizardLM) have a non-commercial license, and thus it does not comply with **the MIT license**. We decided to remove the previous version and build a new SFT model from datasets with less strict licenses. The new model will be uploaded in a few days. We sincerely apologize for our careless mistake.

---

# Overview
This repository provides an English-Japanese bilingual GPT-NeoX model of 3.8 billion parameters.

The model is based on [`rinna/bilingual-gpt-neox-4b`](https://huggingface.co/rinna/bilingual-gpt-neox-4b) and has been finetuned to serve as an instruction-following conversational agent.

* **Model architecture**

    A 36-layer, 2816-hidden-size transformer-based language model.

* **Fine-tuning**
    
    The fine-tuning data is the subset of the following datasets.
    * [Anthropic HH RLHF data](https://huggingface.co/datasets/Anthropic/hh-rlhf) and its Japanese translation
    * [FLAN Instruction Tuning data](https://github.com/google-research/FLAN) and its Japanese translation

* **Model Series**

    | Variant | Link |
    | :-- | :--|
    | Bilingual 4B MiniGPT4 | https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4 |
    | Bilingual 4B PPO | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-ppo |
    | Bilingual 4B SFT | https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft |
    | Bilingual 4B 8K | https://huggingface.co/rinna/bilingual-gpt-neox-4b-8k |
    | Bilingual 4B | https://huggingface.co/rinna/bilingual-gpt-neox-4b |
    | Japanese 3.6B PPO | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo |
    | Japanese 3.6B SFT-v2 | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft-v2 |
    | Japanese 3.6B SFT | https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-sft |
    | Japanese 3.6B | https://huggingface.co/rinna/japanese-gpt-neox-3.6b |

* **Contributors**
    
    [Tianyu Zhao](https://huggingface.co/tianyuz) and [Kei Sawada](https://huggingface.co/keisawada)

---

# Benchmarking

  Our evaluation experiments suggest that the bilingual-gpt-neox-4b-instruction-sft model performs slightly better than the previous [Japanese GPT-NeoX 3.6B PPO](https://huggingface.co/rinna/japanese-gpt-neox-3.6b-instruction-ppo) in Japanese tasks.
  
  - *The 4-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, and JSQuAD.*
  - *The 6-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, JSQuAD, XWinograd, and JAQKET-v2.*
   
  | Model | 4-task average accuracy | 6-task average accuracy |
  | :-- | :-- | :-- |
  | bilingual-gpt-neox-4b-instruction-ppo | 61.01 | 61.16 |
  | **bilingual-gpt-neox-4b-instruction-sft** | **61.02** | **61.69** |
  | bilingual-gpt-neox-4b | 56.12 | 51.83 |
  | japanese-gpt-neox-3.6b-instruction-ppo | 59.86 | 60.07 |
  | japanese-gpt-neox-3.6b | 55.07 | 50.32 |
  
---

# I/O Format
A special format has been adopted to construct inputs.
* An input prompt is formatted as a conversation between `ユーザー` and `システム`.
* Each input utterance consists of (1) its speaker (`"ユーザー"` or `"システム"`), (2) a colon (`":"`), (3) a whitespace (`" "`), and (4) utterance text (e.g. `"世界で一番高い山は?"`).
* The input prompt should be ended with `"システム: "` to acknowledge the model to generate a response.
* All the utterances in the input prompt should be separated by a newline `\n`.

Following is an example to construct input from a conversation.
~~~python
prompt = [
    {
        "speaker": "ユーザー",
        "text": "Hello, you are an assistant that helps me learn Japanese."
    },
    {
        "speaker": "システム",
        "text": "Sure, what can I do for you?"
    },
    {
        "speaker": "ユーザー",
        "text": "VRはなんですか。"
    }
]
prompt = [
    f"{uttr['speaker']}: {uttr['text']}"
    for uttr in prompt
]
prompt = "\n".join(prompt)
prompt = (
    prompt
    + "\n"
    + "システム: "
)
print(prompt)
"""
ユーザー: Hello, you are an assistant that helps me learn Japanese.
システム: Sure, what can I do for you?
ユーザー: VRはなんですか。
システム:
"""
~~~

---

# How to use the model

**Notice:** Since the model is **sensitive to decoding hyper-parameters** (e.g. `temperature`, `top_p`, `top_k`, `repetition_penalty`), it is suggested to explore the best setting for your task.

~~~~python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-sft", use_fast=False)
model = AutoModelForCausalLM.from_pretrained("rinna/bilingual-gpt-neox-4b-instruction-sft")

if torch.cuda.is_available():
    model = model.to("cuda")

token_ids = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

with torch.no_grad():
    output_ids = model.generate(
        token_ids.to(model.device),
        max_new_tokens=512,
        do_sample=True,
        temperature=1.0,
        top_p=0.85,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id
    )

output = tokenizer.decode(output_ids.tolist()[0][token_ids.size(1):])
print(output)
"""VRとはVirtual Realityの略で、仮想現実とも呼ばれます。これは、コンピューターを使用して仮想世界を作り出し、仮想世界上でコンピューターのゲームや仮想世界を体験するための技術です。この技術は、コンピューターやモバイ ルデバイスの進歩によって、2015年以降、ますます普及しています。VRは、ゲームや仮想世界、その他のアプリケー ションなどのさまざまな分野で、コンピューターと人間の相互作用の新しい方法を提供しています。</s>"""
~~~~

---

# Tokenization
The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer.
* The tokenizer has a vocabulary size of 65,536.
* It uses *byte fallback* to decompose unknown text pieces into UTF-8 byte pieces to avoid producing `<UNK>` tokens.
* It can recognize *consecutive whitespaces*, *newlines*, and *tabs* to handle structured texts better.
* We turned off the default behaviour of prepending leading whitespace because it is not beneficial for processing Japanese.
* Specifically, single whitespace is always processed as one token so that any English word won't have a preceding whitespace like in many other tokenizers (e.g. `_Hello`).
  * This decision trades the English processing efficiency for a unified way to treat whitespaces.
  * It leads to a significantly lower loss of next token prediction on English data because whitespaces are easy to predict.
* **Don't forget to set `use_fast=False` to make the above features function correctly.**

---

# How to cite
```bibtex
@misc{rinna-bilingual-gpt-neox-4b-instruction-sft,
    title = {rinna/bilingual-gpt-neox-4b-instruction-sft},
    author = {Zhao, Tianyu and Sawada, Kei},
    url = {https://huggingface.co/rinna/bilingual-gpt-neox-4b-instruction-sft}
}

@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    pages = {13898--13905},
    url = {https://aclanthology.org/2024.lrec-main.1213},
    note = {\url{https://arxiv.org/abs/2404.01657}}
}
```

---

# Licenese
[The MIT license](https://opensource.org/licenses/MIT)