File size: 11,426 Bytes
6a0edd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
license: cc-by-nc-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-ipm_all_videos_gb2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-ipm_all_videos_gb2

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5087
- Accuracy: 0.6957

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 9600

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy |
|:-------------:|:------:|:----:|:---------------:|:--------:|
| 2.4413        | 0.01   | 60   | 2.5408          | 0.0696   |
| 2.3949        | 1.01   | 120  | 2.5420          | 0.0435   |
| 2.5429        | 2.01   | 180  | 2.5626          | 0.0957   |
| 2.4678        | 3.01   | 240  | 2.5721          | 0.0783   |
| 2.3535        | 4.01   | 300  | 2.5703          | 0.0783   |
| 2.3525        | 5.01   | 360  | 2.5966          | 0.0609   |
| 2.2312        | 6.01   | 420  | 2.3565          | 0.1913   |
| 2.0797        | 7.01   | 480  | 2.0738          | 0.1826   |
| 2.1423        | 8.01   | 540  | 2.0182          | 0.2435   |
| 1.8594        | 9.01   | 600  | 2.9555          | 0.0957   |
| 2.2635        | 10.01  | 660  | 2.1157          | 0.1565   |
| 2.0527        | 11.01  | 720  | 1.7646          | 0.2870   |
| 1.4499        | 12.01  | 780  | 2.2083          | 0.2696   |
| 1.3273        | 13.01  | 840  | 2.4202          | 0.2609   |
| 1.4349        | 14.01  | 900  | 1.9185          | 0.3043   |
| 1.476         | 15.01  | 960  | 2.1430          | 0.2261   |
| 1.2768        | 16.01  | 1020 | 1.6487          | 0.3391   |
| 1.2488        | 17.01  | 1080 | 1.7203          | 0.3130   |
| 1.5273        | 18.01  | 1140 | 1.9167          | 0.2783   |
| 1.6865        | 19.01  | 1200 | 2.1734          | 0.2522   |
| 1.448         | 20.01  | 1260 | 2.2406          | 0.3043   |
| 1.3169        | 21.01  | 1320 | 1.8596          | 0.2261   |
| 1.3004        | 22.01  | 1380 | 2.1954          | 0.2957   |
| 1.2201        | 23.01  | 1440 | 1.8007          | 0.3391   |
| 1.7577        | 24.01  | 1500 | 2.2078          | 0.2696   |
| 1.3741        | 25.01  | 1560 | 1.8426          | 0.3217   |
| 1.3676        | 26.01  | 1620 | 1.8888          | 0.3826   |
| 1.5892        | 27.01  | 1680 | 2.0376          | 0.3043   |
| 1.1962        | 28.01  | 1740 | 1.7738          | 0.3130   |
| 1.4768        | 29.01  | 1800 | 1.3115          | 0.4522   |
| 1.4112        | 30.01  | 1860 | 1.4297          | 0.3739   |
| 1.2148        | 31.01  | 1920 | 1.9232          | 0.2870   |
| 1.1125        | 32.01  | 1980 | 1.8406          | 0.3217   |
| 0.9814        | 33.01  | 2040 | 2.0529          | 0.3913   |
| 1.0787        | 34.01  | 2100 | 1.5659          | 0.3391   |
| 1.4073        | 35.01  | 2160 | 1.7671          | 0.3478   |
| 1.2131        | 36.01  | 2220 | 1.5678          | 0.3130   |
| 1.1894        | 37.01  | 2280 | 1.5435          | 0.4087   |
| 1.2001        | 38.01  | 2340 | 1.6149          | 0.3913   |
| 1.518         | 39.01  | 2400 | 1.7457          | 0.2957   |
| 1.1231        | 40.01  | 2460 | 1.7148          | 0.4      |
| 0.9362        | 41.01  | 2520 | 1.5611          | 0.4174   |
| 1.1348        | 42.01  | 2580 | 1.2901          | 0.3826   |
| 0.9504        | 43.01  | 2640 | 1.4024          | 0.4      |
| 1.2008        | 44.01  | 2700 | 1.6685          | 0.4609   |
| 1.0468        | 45.01  | 2760 | 1.6202          | 0.4174   |
| 0.7304        | 46.01  | 2820 | 1.4007          | 0.4522   |
| 0.8522        | 47.01  | 2880 | 1.5439          | 0.4174   |
| 0.9106        | 48.01  | 2940 | 1.6536          | 0.4783   |
| 0.7837        | 49.01  | 3000 | 1.4113          | 0.4609   |
| 0.6869        | 50.01  | 3060 | 1.2071          | 0.5391   |
| 0.8787        | 51.01  | 3120 | 1.3023          | 0.5130   |
| 0.8072        | 52.01  | 3180 | 1.2058          | 0.6      |
| 0.9491        | 53.01  | 3240 | 1.5370          | 0.4957   |
| 0.7642        | 54.01  | 3300 | 1.2301          | 0.5652   |
| 0.6676        | 55.01  | 3360 | 1.4549          | 0.5391   |
| 0.8502        | 56.01  | 3420 | 1.6117          | 0.4522   |
| 1.0006        | 57.01  | 3480 | 1.3982          | 0.4957   |
| 0.8304        | 58.01  | 3540 | 1.3233          | 0.4783   |
| 0.9832        | 59.01  | 3600 | 1.2982          | 0.5478   |
| 0.3973        | 60.01  | 3660 | 1.3903          | 0.5478   |
| 0.9487        | 61.01  | 3720 | 1.4241          | 0.5304   |
| 0.9319        | 62.01  | 3780 | 1.4913          | 0.5565   |
| 0.6713        | 63.01  | 3840 | 1.4731          | 0.5826   |
| 0.7139        | 64.01  | 3900 | 1.0942          | 0.6870   |
| 0.7852        | 65.01  | 3960 | 1.2570          | 0.6348   |
| 1.0018        | 66.01  | 4020 | 1.1249          | 0.5913   |
| 0.7371        | 67.01  | 4080 | 1.4665          | 0.5565   |
| 0.6106        | 68.01  | 4140 | 1.7390          | 0.4957   |
| 0.8815        | 69.01  | 4200 | 1.5044          | 0.5652   |
| 0.6724        | 70.01  | 4260 | 1.8060          | 0.4957   |
| 0.5907        | 71.01  | 4320 | 1.5552          | 0.5391   |
| 0.6218        | 72.01  | 4380 | 1.6037          | 0.5826   |
| 0.7698        | 73.01  | 4440 | 1.4280          | 0.5913   |
| 0.6719        | 74.01  | 4500 | 1.6870          | 0.5565   |
| 0.3956        | 75.01  | 4560 | 1.6326          | 0.5217   |
| 0.6272        | 76.01  | 4620 | 1.3282          | 0.6      |
| 0.4354        | 77.01  | 4680 | 1.5181          | 0.5913   |
| 0.8649        | 78.01  | 4740 | 1.4137          | 0.5913   |
| 0.48          | 79.01  | 4800 | 1.6439          | 0.5913   |
| 0.9693        | 80.01  | 4860 | 1.6453          | 0.5739   |
| 0.3872        | 81.01  | 4920 | 1.5209          | 0.6696   |
| 0.913         | 82.01  | 4980 | 1.5002          | 0.6435   |
| 0.7185        | 83.01  | 5040 | 1.8319          | 0.5478   |
| 1.0149        | 84.01  | 5100 | 1.5270          | 0.5826   |
| 0.3811        | 85.01  | 5160 | 1.3813          | 0.6609   |
| 0.4902        | 86.01  | 5220 | 1.3160          | 0.6348   |
| 1.2717        | 87.01  | 5280 | 1.5052          | 0.6696   |
| 0.5379        | 88.01  | 5340 | 1.4357          | 0.6870   |
| 0.7101        | 89.01  | 5400 | 1.7699          | 0.5739   |
| 0.6517        | 90.01  | 5460 | 1.3428          | 0.6609   |
| 0.6213        | 91.01  | 5520 | 1.4725          | 0.6087   |
| 0.6995        | 92.01  | 5580 | 1.2645          | 0.6435   |
| 0.3997        | 93.01  | 5640 | 1.5827          | 0.5652   |
| 0.7778        | 94.01  | 5700 | 1.2344          | 0.7304   |
| 0.5093        | 95.01  | 5760 | 1.2908          | 0.6957   |
| 0.6022        | 96.01  | 5820 | 1.3528          | 0.6609   |
| 0.508         | 97.01  | 5880 | 1.4460          | 0.6783   |
| 0.4772        | 98.01  | 5940 | 1.1836          | 0.7478   |
| 0.8776        | 99.01  | 6000 | 1.4956          | 0.6435   |
| 0.7514        | 100.01 | 6060 | 1.4904          | 0.6609   |
| 0.1734        | 101.01 | 6120 | 1.6757          | 0.6087   |
| 0.5279        | 102.01 | 6180 | 1.8148          | 0.5913   |
| 0.2101        | 103.01 | 6240 | 1.4176          | 0.6348   |
| 0.6081        | 104.01 | 6300 | 1.7604          | 0.5913   |
| 0.2781        | 105.01 | 6360 | 1.7557          | 0.6087   |
| 0.2321        | 106.01 | 6420 | 1.3726          | 0.6696   |
| 0.4503        | 107.01 | 6480 | 1.6582          | 0.6348   |
| 0.4361        | 108.01 | 6540 | 2.0009          | 0.5913   |
| 0.4934        | 109.01 | 6600 | 1.9722          | 0.5217   |
| 0.3898        | 110.01 | 6660 | 1.5016          | 0.6696   |
| 0.4286        | 111.01 | 6720 | 1.5307          | 0.6783   |
| 0.2792        | 112.01 | 6780 | 1.5770          | 0.6696   |
| 0.2254        | 113.01 | 6840 | 1.7076          | 0.6522   |
| 0.1739        | 114.01 | 6900 | 2.0225          | 0.5826   |
| 0.1951        | 115.01 | 6960 | 1.8448          | 0.6174   |
| 0.614         | 116.01 | 7020 | 1.5507          | 0.6696   |
| 0.6894        | 117.01 | 7080 | 1.5430          | 0.6609   |
| 0.9059        | 118.01 | 7140 | 1.6563          | 0.6696   |
| 0.4592        | 119.01 | 7200 | 1.5566          | 0.7043   |
| 0.3895        | 120.01 | 7260 | 1.5251          | 0.7130   |
| 0.4897        | 121.01 | 7320 | 1.7417          | 0.6696   |
| 0.5362        | 122.01 | 7380 | 1.5845          | 0.6783   |
| 0.4484        | 123.01 | 7440 | 1.6405          | 0.6870   |
| 0.557         | 124.01 | 7500 | 1.5133          | 0.7130   |
| 0.4878        | 125.01 | 7560 | 1.3845          | 0.7391   |
| 0.2704        | 126.01 | 7620 | 1.4704          | 0.6957   |
| 0.7636        | 127.01 | 7680 | 1.4413          | 0.6957   |
| 0.4196        | 128.01 | 7740 | 1.4106          | 0.7043   |
| 0.5835        | 129.01 | 7800 | 1.2571          | 0.7391   |
| 0.6156        | 130.01 | 7860 | 1.8000          | 0.6609   |
| 0.3074        | 131.01 | 7920 | 1.7324          | 0.6435   |
| 0.4697        | 132.01 | 7980 | 1.5218          | 0.7043   |
| 0.2968        | 133.01 | 8040 | 1.3640          | 0.7391   |
| 0.452         | 134.01 | 8100 | 1.4916          | 0.7217   |
| 0.2699        | 135.01 | 8160 | 1.6554          | 0.6957   |
| 0.3889        | 136.01 | 8220 | 1.5015          | 0.7391   |
| 0.5006        | 137.01 | 8280 | 1.4134          | 0.7391   |
| 0.135         | 138.01 | 8340 | 1.3987          | 0.7565   |
| 0.3882        | 139.01 | 8400 | 1.4364          | 0.7304   |
| 0.194         | 140.01 | 8460 | 1.6716          | 0.6957   |
| 0.1185        | 141.01 | 8520 | 1.8543          | 0.6609   |
| 0.4103        | 142.01 | 8580 | 1.9628          | 0.6348   |
| 0.1577        | 143.01 | 8640 | 1.7975          | 0.6609   |
| 0.2213        | 144.01 | 8700 | 1.6324          | 0.6870   |
| 0.6129        | 145.01 | 8760 | 1.5654          | 0.7130   |
| 0.54          | 146.01 | 8820 | 1.4210          | 0.7565   |
| 0.357         | 147.01 | 8880 | 1.4255          | 0.7478   |
| 0.2451        | 148.01 | 8940 | 1.6774          | 0.6957   |
| 0.4752        | 149.01 | 9000 | 1.7326          | 0.6957   |
| 0.1847        | 150.01 | 9060 | 1.7124          | 0.6609   |
| 0.2618        | 151.01 | 9120 | 1.6317          | 0.6783   |
| 0.4884        | 152.01 | 9180 | 1.6136          | 0.6870   |
| 0.4929        | 153.01 | 9240 | 1.5062          | 0.7217   |
| 0.5781        | 154.01 | 9300 | 1.4666          | 0.7217   |
| 0.4633        | 155.01 | 9360 | 1.5033          | 0.7043   |
| 0.5355        | 156.01 | 9420 | 1.4821          | 0.6957   |
| 0.551         | 157.01 | 9480 | 1.4866          | 0.6957   |
| 0.3247        | 158.01 | 9540 | 1.5070          | 0.6957   |
| 0.5455        | 159.01 | 9600 | 1.5087          | 0.6957   |


### Framework versions

- Transformers 4.29.1
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3