richie-ghost commited on
Commit
ab9ca51
·
verified ·
1 Parent(s): 04b3c21

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: csarron/mobilebert-uncased-squad-v2
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: I can't believe how much time has flown by since we last talked.
14
+ - text: Have you completed the assignment?
15
+ - text: What's the total budget for the campaign?
16
+ - text: What's new with you?
17
+ - text: Have a good day!
18
+ inference: true
19
+ ---
20
+
21
+ # SetFit with csarron/mobilebert-uncased-squad-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [csarron/mobilebert-uncased-squad-v2](https://huggingface.co/csarron/mobilebert-uncased-squad-v2)
35
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
36
+ - **Maximum Sequence Length:** 512 tokens
37
+ - **Number of Classes:** 2 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | 1 | <ul><li>"How's the family?"</li><li>'Thanks a million.'</li><li>'I appreciate your kindness.'</li></ul> |
52
+ | 0 | <ul><li>'What is the next step in the process?'</li><li>'Please complete the review by the end of the week.'</li><li>'I feel disconnected from reality.'</li></ul> |
53
+
54
+ ## Uses
55
+
56
+ ### Direct Use for Inference
57
+
58
+ First install the SetFit library:
59
+
60
+ ```bash
61
+ pip install setfit
62
+ ```
63
+
64
+ Then you can load this model and run inference.
65
+
66
+ ```python
67
+ from setfit import SetFitModel
68
+
69
+ # Download from the 🤗 Hub
70
+ model = SetFitModel.from_pretrained("richie-ghost/setfit-mobile-bert-phatic")
71
+ # Run inference
72
+ preds = model("Have a good day!")
73
+ ```
74
+
75
+ <!--
76
+ ### Downstream Use
77
+
78
+ *List how someone could finetune this model on their own dataset.*
79
+ -->
80
+
81
+ <!--
82
+ ### Out-of-Scope Use
83
+
84
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
85
+ -->
86
+
87
+ <!--
88
+ ## Bias, Risks and Limitations
89
+
90
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
91
+ -->
92
+
93
+ <!--
94
+ ### Recommendations
95
+
96
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
97
+ -->
98
+
99
+ ## Training Details
100
+
101
+ ### Training Set Metrics
102
+ | Training set | Min | Median | Max |
103
+ |:-------------|:----|:-------|:----|
104
+ | Word count | 1 | 8.2394 | 184 |
105
+
106
+ | Label | Training Sample Count |
107
+ |:------|:----------------------|
108
+ | 0 | 143 |
109
+ | 1 | 116 |
110
+
111
+ ### Training Hyperparameters
112
+ - batch_size: (32, 32)
113
+ - num_epochs: (2, 2)
114
+ - max_steps: -1
115
+ - sampling_strategy: oversampling
116
+ - body_learning_rate: (2e-05, 1e-05)
117
+ - head_learning_rate: 0.01
118
+ - loss: CosineSimilarityLoss
119
+ - distance_metric: cosine_distance
120
+ - margin: 0.25
121
+ - end_to_end: False
122
+ - use_amp: False
123
+ - warmup_proportion: 0.1
124
+ - l2_weight: 0.01
125
+ - seed: 42
126
+ - evaluation_strategy: epoch
127
+ - eval_max_steps: -1
128
+ - load_best_model_at_end: True
129
+
130
+ ### Training Results
131
+ | Epoch | Step | Training Loss | Validation Loss |
132
+ |:------:|:----:|:-------------:|:---------------:|
133
+ | 0.0009 | 1 | 0.3528 | - |
134
+ | 1.0 | 1068 | 0.0252 | 0.0729 |
135
+ | 2.0 | 2136 | 0.0001 | 0.0544 |
136
+
137
+ ### Framework Versions
138
+ - Python: 3.10.12
139
+ - SetFit: 1.1.0
140
+ - Sentence Transformers: 3.2.1
141
+ - Transformers: 4.39.0
142
+ - PyTorch: 2.0.1+cu117
143
+ - Datasets: 3.1.0
144
+ - Tokenizers: 0.15.2
145
+
146
+ ## Citation
147
+
148
+ ### BibTeX
149
+ ```bibtex
150
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
151
+ doi = {10.48550/ARXIV.2209.11055},
152
+ url = {https://arxiv.org/abs/2209.11055},
153
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
154
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
155
+ title = {Efficient Few-Shot Learning Without Prompts},
156
+ publisher = {arXiv},
157
+ year = {2022},
158
+ copyright = {Creative Commons Attribution 4.0 International}
159
+ }
160
+ ```
161
+
162
+ <!--
163
+ ## Glossary
164
+
165
+ *Clearly define terms in order to be accessible across audiences.*
166
+ -->
167
+
168
+ <!--
169
+ ## Model Card Authors
170
+
171
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
172
+ -->
173
+
174
+ <!--
175
+ ## Model Card Contact
176
+
177
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
178
+ -->
config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "csarron/mobilebert-uncased-squad-v2",
3
+ "architectures": [
4
+ "MobileBertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_activation": false,
8
+ "classifier_dropout": null,
9
+ "embedding_size": 128,
10
+ "hidden_act": "relu",
11
+ "hidden_dropout_prob": 0.0,
12
+ "hidden_size": 512,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 512,
15
+ "intra_bottleneck_size": 128,
16
+ "key_query_shared_bottleneck": true,
17
+ "layer_norm_eps": 1e-12,
18
+ "max_position_embeddings": 512,
19
+ "model_type": "mobilebert",
20
+ "normalization_type": "no_norm",
21
+ "num_attention_heads": 4,
22
+ "num_feedforward_networks": 4,
23
+ "num_hidden_layers": 24,
24
+ "pad_token_id": 0,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.39.0",
27
+ "trigram_input": true,
28
+ "true_hidden_size": 128,
29
+ "type_vocab_size": 2,
30
+ "use_bottleneck": true,
31
+ "use_bottleneck_attention": false,
32
+ "vocab_size": 30522
33
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.0.1+cu117"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c585131f91604902b6cf8a0b77bff2c1912a3d15e27a66ed9b4bad65ecfc6f9
3
+ size 98453640
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22f78e0957f07ef79eed134c650e6e7ab56b1b76e734aa092b984d17db0a8ddd
3
+ size 5611
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "full_tokenizer_file": null,
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 1000000000000000019884624838656,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "MobileBertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff