aria-dev commited on
Commit
3593eaf
·
1 Parent(s): 6be5a01
Files changed (3) hide show
  1. configuration_aria.py +7 -2
  2. modeling_aria.py +8 -0
  3. moe_lm.py +4 -2
configuration_aria.py CHANGED
@@ -66,14 +66,19 @@ class AriaConfig(PretrainedConfig):
66
  },
67
  ignore_index=-100,
68
  image_token_index=32000,
 
69
  **kwargs,
70
  ):
71
  super().__init__(**kwargs)
72
  self.ignore_index = ignore_index
73
  self.image_token_index = image_token_index
74
-
75
  attn_implementation = kwargs.pop("attn_implementation", None)
76
- self._attn_implementation = attn_implementation
 
 
 
 
77
 
78
  # Convert the keys and values of projector_patch_to_query_dict to integers
79
  # This ensures consistency even if they were provided as strings
 
66
  },
67
  ignore_index=-100,
68
  image_token_index=32000,
69
+ tie_word_embeddings=False,
70
  **kwargs,
71
  ):
72
  super().__init__(**kwargs)
73
  self.ignore_index = ignore_index
74
  self.image_token_index = image_token_index
75
+ self.tie_word_embeddings = tie_word_embeddings
76
  attn_implementation = kwargs.pop("attn_implementation", None)
77
+
78
+ # Set the default attention implementation to flash_attention_2 if not specified
79
+ self._attn_implementation = (
80
+ "flash_attention_2" if attn_implementation is None else attn_implementation
81
+ )
82
 
83
  # Convert the keys and values of projector_patch_to_query_dict to integers
84
  # This ensures consistency even if they were provided as strings
modeling_aria.py CHANGED
@@ -165,6 +165,14 @@ class AriaForConditionalGeneration(AriaPretrainedModel, GenerationMixin):
165
  """Set the input embeddings for the language model."""
166
  self.language_model.set_input_embeddings(value)
167
 
 
 
 
 
 
 
 
 
168
  def set_moe_z_loss_coeff(self, value):
169
  """
170
  Set the z-loss coefficient for Mixture of Experts (MoE) models.
 
165
  """Set the input embeddings for the language model."""
166
  self.language_model.set_input_embeddings(value)
167
 
168
+ def get_output_embeddings(self):
169
+ """Retrieve the output embeddings from the language model."""
170
+ return self.language_model.get_output_embeddings()
171
+
172
+ def set_output_embeddings(self, value):
173
+ """Set the output embeddings for the language model."""
174
+ self.language_model.set_output_embeddings(value)
175
+
176
  def set_moe_z_loss_coeff(self, value):
177
  """
178
  Set the z-loss coefficient for Mixture of Experts (MoE) models.
moe_lm.py CHANGED
@@ -255,7 +255,8 @@ class TopKRouter(nn.Module):
255
  - top_indices: Indices of top-k experts for each token.
256
  - tokens_per_expert: Number of tokens assigned to each expert.
257
  """
258
- logits = self.apply_z_loss(logits)
 
259
 
260
  top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1)
261
  scores = torch.softmax(top_logits, dim=-1, dtype=torch.float32).type_as(logits)
@@ -267,7 +268,8 @@ class TopKRouter(nn.Module):
267
  max=self.config.moe_num_experts - 1,
268
  )
269
 
270
- scores = self.apply_aux_loss(logits, tokens_per_expert, scores)
 
271
  return scores, top_indices, tokens_per_expert
272
 
273
  def forward(
 
255
  - top_indices: Indices of top-k experts for each token.
256
  - tokens_per_expert: Number of tokens assigned to each expert.
257
  """
258
+ if self.training:
259
+ logits = self.apply_z_loss(logits)
260
 
261
  top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1)
262
  scores = torch.softmax(top_logits, dim=-1, dtype=torch.float32).type_as(logits)
 
268
  max=self.config.moe_num_experts - 1,
269
  )
270
 
271
+ if self.training:
272
+ scores = self.apply_aux_loss(logits, tokens_per_expert, scores)
273
  return scores, top_indices, tokens_per_expert
274
 
275
  def forward(