File size: 14,936 Bytes
0531a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3f5b6
0531a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb5de81
0531a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3f5b6
0531a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb5de81
 
0531a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb5de81
 
 
 
 
 
0531a03
fb5de81
 
 
 
0531a03
fb5de81
 
 
0531a03
fb5de81
 
 
0531a03
fb5de81
 
 
 
 
 
 
 
 
 
 
 
0531a03
 
 
 
 
 
 
 
 
 
fb5de81
 
0531a03
 
 
 
 
 
 
 
fb5de81
 
 
 
 
0531a03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6be5a01
0531a03
fb5de81
 
0531a03
 
fb5de81
 
 
 
 
 
 
 
 
0531a03
fb5de81
 
 
 
6be5a01
0531a03
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# Copyright 2024 Rhymes AI. All rights reserved.
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch import nn
from transformers import GenerationMixin, PreTrainedModel
from transformers.modeling_outputs import ModelOutput
from transformers.utils import logging

from .configuration_aria import AriaConfig
from .moe_lm import AriaMoELMForCausalLM
from .projector import AriaProjector
from .vision_encoder import AriaVisionModel

logger = logging.get_logger(__name__)


class AriaPretrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
    """

    config_class = AriaConfig
    base_model_prefix = "model"
    _no_split_modules = []
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_cache_class = True
    _supports_static_cache = True

    @property
    def _supports_sdpa(self):
        """
        Retrieve language_model's attribute to check whether the model supports
        SDPA (Scaled Dot Product Attention) or not.
        """
        return self.language_model._supports_sdpa


@dataclass
# Copied from transformers.models.llava.modeling_llava.LlavaCausalLMOutputWithPast with Llava->Aria
class AriaCausalLMOutputWithPast(ModelOutput):
    """
    Base class for Aria causal language model (or autoregressive) outputs.

    Args:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
            `(batch_size, num_heads, sequence_length, embed_size_per_head)`)

            Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
            `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
            Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
            sequence_length, hidden_size)`.

            image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[torch.FloatTensor]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None
    image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None


def build_mm_projector(config: AriaConfig):
    """
    Builds and returns an AriaProjector instance based on the provided configuration.

    Args:
        config (AriaConfig): The configuration object containing necessary parameters.

    Returns:
        AriaProjector: An instance of the AriaProjector class.
    """
    return AriaProjector(
        patch_to_query_dict=config.projector_patch_to_query_dict,
        embed_dim=config.vision_config.hidden_size,
        num_heads=config.vision_config.num_attention_heads,
        kv_dim=config.vision_config.hidden_size,
        ff_dim=config.text_config.hidden_size,
        output_dim=config.text_config.hidden_size,
    )


# adapted from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration
class AriaForConditionalGeneration(AriaPretrainedModel, GenerationMixin):
    """
    Aria model for conditional generation tasks.

    This model combines a vision tower, a multi-modal projector, and a language model
    to perform tasks that involve both image and text inputs.
    """

    def __init__(self, config: AriaConfig):
        super().__init__(config)

        self.vision_tower = AriaVisionModel(config.vision_config)
        self.multi_modal_projector = build_mm_projector(config)
        self.vocab_size = config.text_config.vocab_size
        self.language_model = AriaMoELMForCausalLM(config.text_config)
        self.pad_token_id = (
            self.config.pad_token_id if self.config.pad_token_id is not None else -1
        )
        self.post_init()

    def freeze_vit(self):
        """Freeze the parameters of the vision tower."""
        for param in self.vision_tower.parameters():
            param.requires_grad = False

    def freeze_projector(self):
        """Freeze the parameters of the multi-modal projector."""
        for param in self.multi_modal_projector.parameters():
            param.requires_grad = False

    def freeze_llm(self):
        """Freeze the parameters of the language model."""
        for param in self.language_model.parameters():
            param.requires_grad = False

    def get_input_embeddings(self) -> nn.Module:
        """Retrieve the input embeddings from the language model."""
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        """Set the input embeddings for the language model."""
        self.language_model.set_input_embeddings(value)

    def set_moe_z_loss_coeff(self, value):
        """
        Set the z-loss coefficient for Mixture of Experts (MoE) models.

        Args:
            value: The z-loss coefficient value to set.
        """
        self.language_model.set_z_loss_coeff(value)

    def set_moe_aux_loss_coeff(self, value):
        """
        Set the auxiliary loss coefficient for Mixture of Experts (MoE) models.

        Args:
            value: The auxiliary loss coefficient value to set.
        """
        self.language_model.set_aux_loss_coeff(value)

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        pixel_values: torch.FloatTensor = None,
        pixel_mask: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        num_logits_to_keep: int = 0,
    ) -> Union[Tuple, AriaCausalLMOutputWithPast]:
        """
        Forward pass of the AriaForConditionalGeneration model.

        This method processes both text and image inputs, merges them if necessary,
        and generates output using the language model.

        Args:
            input_ids (torch.LongTensor, optional): Input token ids.
            pixel_values (torch.FloatTensor, optional): Pixel values of the images.
            pixel_mask (torch.LongTensor, optional): Mask for the pixel values.
            attention_mask (torch.Tensor, optional): Attention mask.
            position_ids (torch.LongTensor, optional): Position ids.
            past_key_values (List[torch.FloatTensor], optional): Past key values for efficient processing.
            inputs_embeds (torch.FloatTensor, optional): Input embeddings.
            labels (torch.LongTensor, optional): Labels for computing the language modeling loss.
            use_cache (bool, optional): Whether to use the model's cache mechanism.
            output_attentions (bool, optional): Whether to output attention weights.
            output_hidden_states (bool, optional): Whether to output hidden states.
            return_dict (bool, optional): Whether to return a ModelOutput object.

        Returns:
            Union[Tuple, AriaCausalLMOutputWithPast]: Model outputs.
        """
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        if inputs_embeds is None:
            # 1. Extra the input embeddings
            inputs_embeds = self.get_input_embeddings()(input_ids)

        image_features = None
        if pixel_values is not None:
            image_outputs, image_attn_mask = self.vision_tower(
                pixel_values,
                pixel_mask=pixel_mask,
            )

            selected_image_feature = image_outputs.last_hidden_state
            image_features = self.multi_modal_projector(
                selected_image_feature, attn_mask=image_attn_mask
            )

        if image_features is not None:
            n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
            n_image_features = image_features.shape[0] * image_features.shape[1]

            if n_image_tokens != n_image_features:
                raise ValueError(
                    f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
                )
            special_image_mask = (
                (input_ids == self.config.image_token_index)
                .unsqueeze(-1)
                .expand_as(inputs_embeds)
                .to(inputs_embeds.device)
            )
            image_features = image_features.to(
                inputs_embeds.device, inputs_embeds.dtype
            )
            inputs_embeds = inputs_embeds.masked_scatter(
                special_image_mask, image_features
            )

        outputs = self.language_model(
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
        )

        logits = outputs[0]

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            if attention_mask is not None:
                # we use the input attention mask to shift the logits and labels, because it is 2D.
                # we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
                shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(
                    logits.device
                )
                shift_logits = logits[..., :-1, :][
                    shift_attention_mask.to(logits.device) != 0
                ].contiguous()
                shift_labels = labels[..., 1:][
                    shift_attention_mask.to(labels.device) != 0
                ].contiguous()
            else:
                shift_logits = logits[..., :-1, :].contiguous()
                shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            loss = loss_fct(
                shift_logits.view(-1, shift_logits.size(-1)),
                shift_labels.view(-1).to(shift_logits.device),
            )

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return AriaCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        pixel_values=None,
        pixel_mask=None,
        attention_mask=None,
        cache_position=None,
        num_logits_to_keep=None,
        **kwargs,
    ):
        model_inputs = self.language_model.prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            num_logits_to_keep=num_logits_to_keep,
            **kwargs,
        )

        if cache_position[0] == 0:
            # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
            # Otherwise we need pixel values to be passed to model
            model_inputs["pixel_values"] = pixel_values
            model_inputs["pixel_mask"] = pixel_mask

        return model_inputs