Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-2-7b-hf
|
3 |
+
---
|
4 |
+
|
5 |
+
# Model Details
|
6 |
+
|
7 |
+
- SFT based on [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) with merged alpaca datasets
|
8 |
+
- DPO: trained on top of SFT model as LoRa Adapter, with merged [hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) data
|
9 |
+
- PPO: trained on top of dpo model and reward model, with multi-adapters, with [PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF) data for futher RLHF
|
10 |
+
- Trained with Deepspeed ZeRO-1 + TRL + QLoRA + Flash-Attntion 2
|
11 |
+
|
12 |
+
|
13 |
+
## Model and Training Details
|
14 |
+
|
15 |
+
- **Finetuned from model:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf)
|
16 |
+
|
17 |
+
- **Dataset:**
|
18 |
+
- SFT (mixed train):
|
19 |
+
- [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned)
|
20 |
+
- [vicgalle/alpaca-gpt4](https://huggingface.co/datasets/vicgalle/alpaca-gpt4)
|
21 |
+
- DPO (mixed train):
|
22 |
+
- [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf)
|
23 |
+
- [Unified-Language-Model-Alignment/Anthropic_HH_Golden](https://huggingface.co/datasets/Unified-Language-Model-Alignment/Anthropic_HH_Golden)
|
24 |
+
- PPO:
|
25 |
+
- [PKU-Alignment/PKU-SafeRLHF-10K](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-10K)
|
26 |
+
- [PKU-Alignment/PKU-SafeRLHF-30K](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-30K)
|
27 |
+
- [PKU-Alignment/PKU-SafeRLHF](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF)
|
28 |
+
|
29 |
+
### Training Results
|
30 |
+
|
31 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b1dd2a855f6b5fe621bc0e/miik5Tb6A8G6sDTlnQA-V.png)
|
32 |
+
|
33 |
+
### Evaluation
|
34 |
+
|
35 |
+
The reward score and toxicity scores are computed and compared with [PKU-Alignment/PKU-SafeRLHF-30K](https://huggingface.co/datasets/PKU-Alignment/PKU-SafeRLHF-30K) data on SFT/DPO/PPO models
|
36 |
+
|
37 |
+
| Model | Toxicity | Reward |
|
38 |
+
| ----- |:--------:|:--------:|
|
39 |
+
| SFT_v0.1 | 0.0698 | -0.2828 |
|
40 |
+
| DPO_v0.1 | 0.0356 | -0.2633 |
|
41 |
+
| PPO_v0.1 | 0.0321 | 0.38 |
|
42 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b1dd2a855f6b5fe621bc0e/m-k6kUuIJVTkYM2l3uBPd.png)
|
43 |
+
|
44 |
+
### Compute Infrastructure
|
45 |
+
|
46 |
+
The model is trained using 8 * RTX-3090-24GB/A100-PCIE-40GB
|
47 |
+
|
48 |
+
### Inference
|
49 |
+
```python
|
50 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
51 |
+
|
52 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, trust_remote_code=True,)
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True,)
|
54 |
+
|
55 |
+
tokenizer.pad_token = tokenizer.eos_token
|
56 |
+
tokenizer.eos_token = DEFINE_EOS_TOKEN
|
57 |
+
model.config.eos_token = DEFINE_EOS_TOKEN
|
58 |
+
model.config.eos_token_id = tokenizer.eos_token_id
|
59 |
+
|
60 |
+
def format_prompt(question):
|
61 |
+
return f"###Question: {question}\n###Answer: "
|
62 |
+
|
63 |
+
instruction = "Your text here"
|
64 |
+
input = format_prompt(instruction)
|
65 |
+
inputs = tokenizer(input, return_tensors='pt')
|
66 |
+
output = model.generate(inputs['input_ids'], max_new_tokens=512, do_sample=False, top_p=1)
|
67 |
+
output = tokenizer.decode(output[0], skip_special_tokens=True)
|
68 |
+
print(output)
|
69 |
+
|
70 |
+
```
|
71 |
+
## Model Card Authors
|
72 |
+
|
73 |
+
Yiyu (Michael) Ren
|
74 |
+
|
75 |
+
## Model Card Contact
|
76 |
+
|
77 |
+
Email: [email protected]
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- PEFT 0.8.2
|