asahi417 commited on
Commit
d190633
·
1 Parent(s): fae8ef3

model update

Browse files
README.md CHANGED
@@ -14,7 +14,7 @@ model-index:
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
- value: 0.7540079365079365
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
@@ -25,7 +25,7 @@ model-index:
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
- value: 0.6844919786096256
29
  - task:
30
  name: Analogy Questions (SAT)
31
  type: multiple-choice-qa
@@ -36,7 +36,7 @@ model-index:
36
  metrics:
37
  - name: Accuracy
38
  type: accuracy
39
- value: 0.685459940652819
40
  - task:
41
  name: Analogy Questions (BATS)
42
  type: multiple-choice-qa
@@ -47,7 +47,7 @@ model-index:
47
  metrics:
48
  - name: Accuracy
49
  type: accuracy
50
- value: 0.7971095052807116
51
  - task:
52
  name: Analogy Questions (Google)
53
  type: multiple-choice-qa
@@ -58,7 +58,7 @@ model-index:
58
  metrics:
59
  - name: Accuracy
60
  type: accuracy
61
- value: 0.934
62
  - task:
63
  name: Analogy Questions (U2)
64
  type: multiple-choice-qa
@@ -69,7 +69,7 @@ model-index:
69
  metrics:
70
  - name: Accuracy
71
  type: accuracy
72
- value: 0.6535087719298246
73
  - task:
74
  name: Analogy Questions (U4)
75
  type: multiple-choice-qa
@@ -80,7 +80,7 @@ model-index:
80
  metrics:
81
  - name: Accuracy
82
  type: accuracy
83
- value: 0.6504629629629629
84
  - task:
85
  name: Analogy Questions (ConceptNet Analogy)
86
  type: multiple-choice-qa
@@ -91,7 +91,7 @@ model-index:
91
  metrics:
92
  - name: Accuracy
93
  type: accuracy
94
- value: 0.44798657718120805
95
  - task:
96
  name: Analogy Questions (TREX Analogy)
97
  type: multiple-choice-qa
@@ -102,7 +102,7 @@ model-index:
102
  metrics:
103
  - name: Accuracy
104
  type: accuracy
105
- value: 0.6502732240437158
106
  - task:
107
  name: Analogy Questions (NELL-ONE Analogy)
108
  type: multiple-choice-qa
@@ -113,7 +113,7 @@ model-index:
113
  metrics:
114
  - name: Accuracy
115
  type: accuracy
116
- value: 0.6733333333333333
117
  - task:
118
  name: Lexical Relation Classification (BLESS)
119
  type: classification
@@ -124,10 +124,10 @@ model-index:
124
  metrics:
125
  - name: F1
126
  type: f1
127
- value: 0.9243634172065692
128
  - name: F1 (macro)
129
  type: f1_macro
130
- value: 0.9210584903501834
131
  - task:
132
  name: Lexical Relation Classification (CogALexV)
133
  type: classification
@@ -138,10 +138,10 @@ model-index:
138
  metrics:
139
  - name: F1
140
  type: f1
141
- value: 0.8647887323943662
142
  - name: F1 (macro)
143
  type: f1_macro
144
- value: 0.7127446509718055
145
  - task:
146
  name: Lexical Relation Classification (EVALution)
147
  type: classification
@@ -152,10 +152,10 @@ model-index:
152
  metrics:
153
  - name: F1
154
  type: f1
155
- value: 0.6895991332611051
156
  - name: F1 (macro)
157
  type: f1_macro
158
- value: 0.6739419788779412
159
  - task:
160
  name: Lexical Relation Classification (K&H+N)
161
  type: classification
@@ -166,10 +166,10 @@ model-index:
166
  metrics:
167
  - name: F1
168
  type: f1
169
- value: 0.9527022327328372
170
  - name: F1 (macro)
171
  type: f1_macro
172
- value: 0.8701681183593395
173
  - task:
174
  name: Lexical Relation Classification (ROOT09)
175
  type: classification
@@ -180,34 +180,34 @@ model-index:
180
  metrics:
181
  - name: F1
182
  type: f1
183
- value: 0.8953306173613286
184
  - name: F1 (macro)
185
  type: f1_macro
186
- value: 0.8920689938172552
187
 
188
  ---
189
  # relbert/relbert-roberta-base-nce-semeval2012-1
190
 
191
- RelBERT based on [roberta-large](https://huggingface.co/roberta-large) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
192
  This model achieves the following results on the relation understanding tasks:
193
  - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-1/raw/main/analogy.forward.json)):
194
- - Accuracy on SAT (full): 0.6844919786096256
195
- - Accuracy on SAT: 0.685459940652819
196
- - Accuracy on BATS: 0.7971095052807116
197
- - Accuracy on U2: 0.6535087719298246
198
- - Accuracy on U4: 0.6504629629629629
199
- - Accuracy on Google: 0.934
200
- - Accuracy on ConceptNet Analogy: 0.44798657718120805
201
- - Accuracy on T-Rex Analogy: 0.6502732240437158
202
- - Accuracy on NELL-ONE Analogy: 0.6733333333333333
203
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-1/raw/main/classification.json)):
204
- - Micro F1 score on BLESS: 0.9243634172065692
205
- - Micro F1 score on CogALexV: 0.8647887323943662
206
- - Micro F1 score on EVALution: 0.6895991332611051
207
- - Micro F1 score on K&H+N: 0.9527022327328372
208
- - Micro F1 score on ROOT09: 0.8953306173613286
209
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-1/raw/main/relation_mapping.json)):
210
- - Accuracy on Relation Mapping: 0.7540079365079365
211
 
212
 
213
  ### Usage
@@ -224,7 +224,7 @@ vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, )
224
 
225
  ### Training hyperparameters
226
 
227
- - model: roberta-large
228
  - max_length: 64
229
  - epoch: 10
230
  - batch: 32
@@ -239,7 +239,7 @@ vector = model.get_embedding(['Tokyo', 'Japan']) # shape of (n_dim, )
239
  - split_valid: validation
240
  - loss_function: nce
241
  - classification_loss: False
242
- - loss_function_config: {'temperature': 0.05, 'num_negative': 100, 'num_positive': 10}
243
  - augment_negative_by_positive: True
244
 
245
  See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-1/raw/main/finetuning_config.json).
 
14
  metrics:
15
  - name: Accuracy
16
  type: accuracy
17
+ value: 0.8504761904761905
18
  - task:
19
  name: Analogy Questions (SAT full)
20
  type: multiple-choice-qa
 
25
  metrics:
26
  - name: Accuracy
27
  type: accuracy
28
+ value: 0.5427807486631016
29
  - task:
30
  name: Analogy Questions (SAT)
31
  type: multiple-choice-qa
 
36
  metrics:
37
  - name: Accuracy
38
  type: accuracy
39
+ value: 0.5459940652818991
40
  - task:
41
  name: Analogy Questions (BATS)
42
  type: multiple-choice-qa
 
47
  metrics:
48
  - name: Accuracy
49
  type: accuracy
50
+ value: 0.6525847693162868
51
  - task:
52
  name: Analogy Questions (Google)
53
  type: multiple-choice-qa
 
58
  metrics:
59
  - name: Accuracy
60
  type: accuracy
61
+ value: 0.794
62
  - task:
63
  name: Analogy Questions (U2)
64
  type: multiple-choice-qa
 
69
  metrics:
70
  - name: Accuracy
71
  type: accuracy
72
+ value: 0.5175438596491229
73
  - task:
74
  name: Analogy Questions (U4)
75
  type: multiple-choice-qa
 
80
  metrics:
81
  - name: Accuracy
82
  type: accuracy
83
+ value: 0.5370370370370371
84
  - task:
85
  name: Analogy Questions (ConceptNet Analogy)
86
  type: multiple-choice-qa
 
91
  metrics:
92
  - name: Accuracy
93
  type: accuracy
94
+ value: 0.27432885906040266
95
  - task:
96
  name: Analogy Questions (TREX Analogy)
97
  type: multiple-choice-qa
 
102
  metrics:
103
  - name: Accuracy
104
  type: accuracy
105
+ value: 0.5519125683060109
106
  - task:
107
  name: Analogy Questions (NELL-ONE Analogy)
108
  type: multiple-choice-qa
 
113
  metrics:
114
  - name: Accuracy
115
  type: accuracy
116
+ value: 0.71
117
  - task:
118
  name: Lexical Relation Classification (BLESS)
119
  type: classification
 
124
  metrics:
125
  - name: F1
126
  type: f1
127
+ value: 0.9135151423836071
128
  - name: F1 (macro)
129
  type: f1_macro
130
+ value: 0.9050919469118833
131
  - task:
132
  name: Lexical Relation Classification (CogALexV)
133
  type: classification
 
138
  metrics:
139
  - name: F1
140
  type: f1
141
+ value: 0.8145539906103286
142
  - name: F1 (macro)
143
  type: f1_macro
144
+ value: 0.5971186607822399
145
  - task:
146
  name: Lexical Relation Classification (EVALution)
147
  type: classification
 
152
  metrics:
153
  - name: F1
154
  type: f1
155
+ value: 0.633261105092091
156
  - name: F1 (macro)
157
  type: f1_macro
158
+ value: 0.6237504036335496
159
  - task:
160
  name: Lexical Relation Classification (K&H+N)
161
  type: classification
 
166
  metrics:
167
  - name: F1
168
  type: f1
169
+ value: 0.9474160116853307
170
  - name: F1 (macro)
171
  type: f1_macro
172
+ value: 0.8607141611262328
173
  - task:
174
  name: Lexical Relation Classification (ROOT09)
175
  type: classification
 
180
  metrics:
181
  - name: F1
182
  type: f1
183
+ value: 0.8831087433406457
184
  - name: F1 (macro)
185
  type: f1_macro
186
+ value: 0.879524520525773
187
 
188
  ---
189
  # relbert/relbert-roberta-base-nce-semeval2012-1
190
 
191
+ RelBERT based on [roberta-base](https://huggingface.co/roberta-base) fine-tuned on [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) (see the [`relbert`](https://github.com/asahi417/relbert) for more detail of fine-tuning).
192
  This model achieves the following results on the relation understanding tasks:
193
  - Analogy Question ([dataset](https://huggingface.co/datasets/relbert/analogy_questions), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-1/raw/main/analogy.forward.json)):
194
+ - Accuracy on SAT (full): 0.5427807486631016
195
+ - Accuracy on SAT: 0.5459940652818991
196
+ - Accuracy on BATS: 0.6525847693162868
197
+ - Accuracy on U2: 0.5175438596491229
198
+ - Accuracy on U4: 0.5370370370370371
199
+ - Accuracy on Google: 0.794
200
+ - Accuracy on ConceptNet Analogy: 0.27432885906040266
201
+ - Accuracy on T-Rex Analogy: 0.5519125683060109
202
+ - Accuracy on NELL-ONE Analogy: 0.71
203
  - Lexical Relation Classification ([dataset](https://huggingface.co/datasets/relbert/lexical_relation_classification), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-1/raw/main/classification.json)):
204
+ - Micro F1 score on BLESS: 0.9135151423836071
205
+ - Micro F1 score on CogALexV: 0.8145539906103286
206
+ - Micro F1 score on EVALution: 0.633261105092091
207
+ - Micro F1 score on K&H+N: 0.9474160116853307
208
+ - Micro F1 score on ROOT09: 0.8831087433406457
209
  - Relation Mapping ([dataset](https://huggingface.co/datasets/relbert/relation_mapping), [full result](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-1/raw/main/relation_mapping.json)):
210
+ - Accuracy on Relation Mapping: 0.8504761904761905
211
 
212
 
213
  ### Usage
 
224
 
225
  ### Training hyperparameters
226
 
227
+ - model: roberta-base
228
  - max_length: 64
229
  - epoch: 10
230
  - batch: 32
 
239
  - split_valid: validation
240
  - loss_function: nce
241
  - classification_loss: False
242
+ - loss_function_config: {'temperature': 0.05, 'num_negative': 400, 'num_positive': 10}
243
  - augment_negative_by_positive: True
244
 
245
  See the full configuration at [config file](https://huggingface.co/relbert/relbert-roberta-base-nce-semeval2012-1/raw/main/finetuning_config.json).
analogy.forward.json CHANGED
@@ -1 +1 @@
1
- {"semeval2012_relational_similarity/validation": 0.7468354430379747, "scan/test": 0.27042079207920794, "sat_full/test": 0.6844919786096256, "sat/test": 0.685459940652819, "u2/test": 0.6535087719298246, "u4/test": 0.6504629629629629, "google/test": 0.934, "bats/test": 0.7971095052807116, "t_rex_relational_similarity/test": 0.6502732240437158, "conceptnet_relational_similarity/test": 0.44798657718120805, "nell_relational_similarity/test": 0.6733333333333333}
 
1
+ {"semeval2012_relational_similarity/validation": 0.7721518987341772, "scan/test": 0.2592821782178218, "sat_full/test": 0.5427807486631016, "sat/test": 0.5459940652818991, "u2/test": 0.5175438596491229, "u4/test": 0.5370370370370371, "google/test": 0.794, "bats/test": 0.6525847693162868, "t_rex_relational_similarity/test": 0.5519125683060109, "conceptnet_relational_similarity/test": 0.27432885906040266, "nell_relational_similarity/test": 0.71}
classification.json CHANGED
@@ -1 +1 @@
1
- {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9243634172065692, "test/f1_macro": 0.9210584903501834, "test/f1_micro": 0.9243634172065692, "test/p_macro": 0.9105248465838572, "test/p_micro": 0.9243634172065692, "test/r_macro": 0.9330081928345754, "test/r_micro": 0.9243634172065692, "test/f1/attri": 0.9138888888888889, "test/p/attri": 0.8844086021505376, "test/r/attri": 0.9454022988505747, "test/f1/coord": 0.9608621667612025, "test/p/coord": 0.9614074914869466, "test/r/coord": 0.9603174603174603, "test/f1/event": 0.8839835728952773, "test/p/event": 0.8670694864048338, "test/r/event": 0.9015706806282723, "test/f1/hyper": 0.9401709401709402, "test/p/hyper": 0.9375, "test/r/hyper": 0.9428571428571428, "test/f1/mero": 0.8910133843212236, "test/p/mero": 0.8493317132442284, "test/r/mero": 0.9369973190348525, "test/f1/random": 0.9364319890635681, "test/p/random": 0.9634317862165963, "test/r/random": 0.910904255319149}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8647887323943662, "test/f1_macro": 0.7127446509718055, "test/f1_micro": 0.8647887323943662, "test/p_macro": 0.751262043484815, "test/p_micro": 0.8647887323943662, "test/r_macro": 0.6828073632355707, "test/r_micro": 0.8647887323943662, "test/f1/ANT": 0.7856115107913668, "test/p/ANT": 0.8149253731343283, "test/r/ANT": 0.7583333333333333, "test/f1/HYPER": 0.621301775147929, "test/p/HYPER": 0.7142857142857143, "test/r/HYPER": 0.5497382198952879, "test/f1/PART_OF": 0.7196029776674939, "test/p/PART_OF": 0.8100558659217877, "test/r/PART_OF": 0.6473214285714286, "test/f1/RANDOM": 0.9361363274406752, "test/p/RANDOM": 0.9127329192546584, "test/r/RANDOM": 0.960771493952272, "test/f1/SYN": 0.5010706638115631, "test/p/SYN": 0.5043103448275862, "test/r/SYN": 0.4978723404255319}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.6895991332611051, "test/f1_macro": 0.6739419788779412, "test/f1_micro": 0.6895991332611051, "test/p_macro": 0.7007265450978665, "test/p_micro": 0.6895991332611051, "test/r_macro": 0.6565955304970702, "test/r_micro": 0.6895991332611051, "test/f1/Antonym": 0.8098765432098765, "test/p/Antonym": 0.830379746835443, "test/r/Antonym": 0.7903614457831325, "test/f1/HasA": 0.6466165413533835, "test/p/HasA": 0.6935483870967742, "test/r/HasA": 0.6056338028169014, "test/f1/HasProperty": 0.8377125193199382, "test/p/HasProperty": 0.8338461538461538, "test/r/HasProperty": 0.8416149068322981, "test/f1/IsA": 0.6430622009569378, "test/p/IsA": 0.5733788395904437, "test/r/IsA": 0.7320261437908496, "test/f1/MadeOf": 0.6357615894039734, "test/p/MadeOf": 0.7384615384615385, "test/r/MadeOf": 0.5581395348837209, "test/f1/PartOf": 0.7292418772563177, "test/p/PartOf": 0.7651515151515151, "test/r/PartOf": 0.696551724137931, "test/f1/Synonym": 0.4153225806451613, "test/p/Synonym": 0.4703196347031963, "test/r/Synonym": 0.37184115523465705}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9527022327328372, "test/f1_macro": 0.8701681183593395, "test/f1_micro": 0.9527022327328372, "test/p_macro": 0.8796338008860408, "test/p_micro": 0.9527022327328372, "test/r_macro": 0.8612759108696288, "test/r_micro": 0.9527022327328372, "test/f1/false": 0.9632255206025698, "test/p/false": 0.9596821659799882, "test/r/false": 0.9667951378594722, "test/f1/hypo": 0.9145679012345679, "test/p/hypo": 0.9420142421159715, "test/r/hypo": 0.8886756238003839, "test/f1/mero": 0.6439232409381662, "test/p/mero": 0.6593886462882096, "test/r/mero": 0.6291666666666667, "test/f1/sibl": 0.9589558106620538, "test/p/sibl": 0.9574501491599937, "test/r/sibl": 0.9604662151519925}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8953306173613287, "test/f1_macro": 0.8920689938172552, "test/f1_micro": 0.8953306173613286, "test/p_macro": 0.8973007374529117, "test/p_micro": 0.8953306173613287, "test/r_macro": 0.8883308156737318, "test/r_micro": 0.8953306173613287, "test/f1/COORD": 0.9720534629404617, "test/p/COORD": 0.963855421686747, "test/r/COORD": 0.9803921568627451, "test/f1/HYPER": 0.8044041450777202, "test/p/HYPER": 0.8448979591836735, "test/r/HYPER": 0.7676143386897404, "test/f1/RANDOM": 0.899749373433584, "test/p/RANDOM": 0.8831488314883149, "test/r/RANDOM": 0.9169859514687101}}
 
1
+ {"lexical_relation_classification/BLESS": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9135151423836071, "test/f1_macro": 0.9050919469118833, "test/f1_micro": 0.9135151423836071, "test/p_macro": 0.907490718806211, "test/p_micro": 0.9135151423836071, "test/r_macro": 0.9030772446842444, "test/r_micro": 0.9135151423836071, "test/f1/attri": 0.9125090383224873, "test/p/attri": 0.9184861717612809, "test/r/attri": 0.9066091954022989, "test/f1/coord": 0.9517937219730941, "test/p/coord": 0.9412416851441242, "test/r/coord": 0.9625850340136054, "test/f1/event": 0.855072463768116, "test/p/event": 0.8454452405322416, "test/r/event": 0.8649214659685864, "test/f1/hyper": 0.9042709867452136, "test/p/hyper": 0.9331306990881459, "test/r/hyper": 0.8771428571428571, "test/f1/mero": 0.8750835003340014, "test/p/mero": 0.8721704394141145, "test/r/mero": 0.8780160857908847, "test/f1/random": 0.9318219703283881, "test/p/random": 0.9344700768973587, "test/r/random": 0.929188829787234}, "lexical_relation_classification/CogALexV": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8145539906103286, "test/f1_macro": 0.5971186607822399, "test/f1_micro": 0.8145539906103286, "test/p_macro": 0.6302906839320729, "test/p_micro": 0.8145539906103286, "test/r_macro": 0.5705454145775101, "test/r_micro": 0.8145539906103286, "test/f1/ANT": 0.6320610687022901, "test/p/ANT": 0.7016949152542373, "test/r/ANT": 0.575, "test/f1/HYPER": 0.5299145299145299, "test/p/HYPER": 0.58125, "test/r/HYPER": 0.4869109947643979, "test/f1/PART_OF": 0.6228710462287105, "test/p/PART_OF": 0.6844919786096256, "test/r/PART_OF": 0.5714285714285714, "test/f1/RANDOM": 0.9162827640984909, "test/p/RANDOM": 0.8912237330037083, "test/r/RANDOM": 0.9427917620137299, "test/f1/SYN": 0.2844638949671773, "test/p/SYN": 0.2927927927927928, "test/r/SYN": 0.2765957446808511}, "lexical_relation_classification/EVALution": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.633261105092091, "test/f1_macro": 0.6237504036335496, "test/f1_micro": 0.633261105092091, "test/p_macro": 0.6353583177650961, "test/p_micro": 0.633261105092091, "test/r_macro": 0.6182601389498605, "test/r_micro": 0.633261105092091, "test/f1/Antonym": 0.7310513447432763, "test/p/Antonym": 0.7419354838709677, "test/r/Antonym": 0.7204819277108434, "test/f1/HasA": 0.6369426751592356, "test/p/HasA": 0.5813953488372093, "test/r/HasA": 0.704225352112676, "test/f1/HasProperty": 0.7912772585669782, "test/p/HasProperty": 0.79375, "test/r/HasProperty": 0.7888198757763976, "test/f1/IsA": 0.5889698231009365, "test/p/IsA": 0.5637450199203188, "test/r/IsA": 0.616557734204793, "test/f1/MadeOf": 0.5960264900662252, "test/p/MadeOf": 0.6923076923076923, "test/r/MadeOf": 0.5232558139534884, "test/f1/PartOf": 0.6521739130434783, "test/p/PartOf": 0.6870229007633588, "test/r/PartOf": 0.6206896551724138, "test/f1/Synonym": 0.36981132075471695, "test/p/Synonym": 0.38735177865612647, "test/r/Synonym": 0.35379061371841153}, "lexical_relation_classification/K&H+N": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.9474160116853307, "test/f1_macro": 0.8607141611262328, "test/f1_micro": 0.9474160116853307, "test/p_macro": 0.8789181448983643, "test/p_micro": 0.9474160116853307, "test/r_macro": 0.8478727519113285, "test/r_micro": 0.9474160116853307, "test/f1/false": 0.9595643091614443, "test/p/false": 0.9659056773805947, "test/r/false": 0.9533056626148829, "test/f1/hypo": 0.901222953904045, "test/p/hypo": 0.8837638376383764, "test/r/hypo": 0.9193857965451055, "test/f1/mero": 0.6291079812206573, "test/p/mero": 0.7204301075268817, "test/r/mero": 0.5583333333333333, "test/f1/sibl": 0.9529614002187843, "test/p/sibl": 0.9455729570476042, "test/r/sibl": 0.9604662151519925}, "lexical_relation_classification/ROOT09": {"classifier_config": {"activation": "relu", "alpha": 0.0001, "batch_size": "auto", "beta_1": 0.9, "beta_2": 0.999, "early_stopping": false, "epsilon": 1e-08, "hidden_layer_sizes": [100], "learning_rate": "constant", "learning_rate_init": 0.001, "max_fun": 15000, "max_iter": 200, "momentum": 0.9, "n_iter_no_change": 10, "nesterovs_momentum": true, "power_t": 0.5, "random_state": 0, "shuffle": true, "solver": "adam", "tol": 0.0001, "validation_fraction": 0.1, "verbose": false, "warm_start": false}, "test/accuracy": 0.8831087433406456, "test/f1_macro": 0.879524520525773, "test/f1_micro": 0.8831087433406457, "test/p_macro": 0.8809300714710512, "test/p_micro": 0.8831087433406456, "test/r_macro": 0.8782651144622745, "test/r_micro": 0.8831087433406456, "test/f1/COORD": 0.9688073394495412, "test/p/COORD": 0.967032967032967, "test/r/COORD": 0.9705882352941176, "test/f1/HYPER": 0.7779171894604768, "test/p/HYPER": 0.7898089171974523, "test/r/HYPER": 0.7663782447466008, "test/f1/RANDOM": 0.8918490326673009, "test/p/RANDOM": 0.8859483301827347, "test/r/RANDOM": 0.8978288633461047}}
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "roberta-large",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
@@ -9,19 +9,19 @@
9
  "eos_token_id": 2,
10
  "hidden_act": "gelu",
11
  "hidden_dropout_prob": 0.1,
12
- "hidden_size": 1024,
13
  "initializer_range": 0.02,
14
- "intermediate_size": 4096,
15
  "layer_norm_eps": 1e-05,
16
  "max_position_embeddings": 514,
17
  "model_type": "roberta",
18
- "num_attention_heads": 16,
19
- "num_hidden_layers": 24,
20
  "pad_token_id": 1,
21
  "position_embedding_type": "absolute",
22
  "relbert_config": {
23
  "aggregation_mode": "average_no_mask",
24
- "template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>"
25
  },
26
  "torch_dtype": "float32",
27
  "transformers_version": "4.26.1",
 
1
  {
2
+ "_name_or_path": "roberta-base",
3
  "architectures": [
4
  "RobertaModel"
5
  ],
 
9
  "eos_token_id": 2,
10
  "hidden_act": "gelu",
11
  "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
  "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
  "layer_norm_eps": 1e-05,
16
  "max_position_embeddings": 514,
17
  "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
  "pad_token_id": 1,
21
  "position_embedding_type": "absolute",
22
  "relbert_config": {
23
  "aggregation_mode": "average_no_mask",
24
+ "template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>\u2019s <mask>"
25
  },
26
  "torch_dtype": "float32",
27
  "transformers_version": "4.26.1",
finetuning_config.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
- "template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <subj> is the <mask> of <obj>",
3
- "model": "roberta-large",
4
  "max_length": 64,
5
  "epoch": 10,
6
  "batch": 32,
@@ -17,7 +17,7 @@
17
  "classification_loss": false,
18
  "loss_function_config": {
19
  "temperature": 0.05,
20
- "num_negative": 100,
21
  "num_positive": 10
22
  },
23
  "augment_negative_by_positive": true
 
1
  {
2
+ "template": "I wasn\u2019t aware of this relationship, but I just read in the encyclopedia that <obj> is <subj>\u2019s <mask>",
3
+ "model": "roberta-base",
4
  "max_length": 64,
5
  "epoch": 10,
6
  "batch": 32,
 
17
  "classification_loss": false,
18
  "loss_function_config": {
19
  "temperature": 0.05,
20
+ "num_negative": 400,
21
  "num_positive": 10
22
  },
23
  "augment_negative_by_positive": true
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee1a100836ccfa7ee54d098445038c13a013242ed51dcc5b426399caf0769b2d
3
- size 1421575277
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d0fcb094b4373e4c40bf130a45b9035be8703df3360c2c9e77950680f9b3a32
3
+ size 498652017
relation_mapping.json CHANGED
The diff for this file is too large to render. See raw diff
 
tokenizer.json CHANGED
@@ -53,8 +53,7 @@
53
  "pre_tokenizer": {
54
  "type": "ByteLevel",
55
  "add_prefix_space": false,
56
- "trim_offsets": true,
57
- "use_regex": true
58
  },
59
  "post_processor": {
60
  "type": "RobertaProcessing",
@@ -72,8 +71,7 @@
72
  "decoder": {
73
  "type": "ByteLevel",
74
  "add_prefix_space": true,
75
- "trim_offsets": true,
76
- "use_regex": true
77
  },
78
  "model": {
79
  "type": "BPE",
 
53
  "pre_tokenizer": {
54
  "type": "ByteLevel",
55
  "add_prefix_space": false,
56
+ "trim_offsets": true
 
57
  },
58
  "post_processor": {
59
  "type": "RobertaProcessing",
 
71
  "decoder": {
72
  "type": "ByteLevel",
73
  "add_prefix_space": true,
74
+ "trim_offsets": true
 
75
  },
76
  "model": {
77
  "type": "BPE",
tokenizer_config.json CHANGED
@@ -6,7 +6,7 @@
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
- "name_or_path": "roberta-large",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,
 
6
  "errors": "replace",
7
  "mask_token": "<mask>",
8
  "model_max_length": 512,
9
+ "name_or_path": "roberta-base",
10
  "pad_token": "<pad>",
11
  "sep_token": "</s>",
12
  "special_tokens_map_file": null,