Kian Kenyon-Dean commited on
Commit
86fd276
·
unverified ·
2 Parent(s): 8135e31 cbdd05e

Merge pull request #4 from recursionpharma/more-code

Browse files
Files changed (3) hide show
  1. .vscode/settings.json +5 -0
  2. requirements.txt +9 -0
  3. vit_encoder.py +60 -0
.vscode/settings.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "flake8.args": [
3
+ "--max-line-length=120"
4
+ ]
5
+ }
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ huggingface-hub==0.18.0
2
+ timm==0.9.7
3
+ torch==2.1.0+cu121
4
+ torchmetrics==1.2.0
5
+ torchvision==0.16.0+cu121
6
+ tqdm==4.66.1
7
+ transformers==4.35.2
8
+ xformers==0.0.22.post7
9
+ zarr==2.16.1
vit_encoder.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+
3
+ import timm.models.vision_transformer as vit
4
+ import torch
5
+
6
+
7
+ def build_imagenet_baselines() -> Dict[str, torch.jit.ScriptModule]:
8
+ """This returns the prepped imagenet encoders from timm, not bad for microscopy data."""
9
+ vit_backbones = [
10
+ _make_vit(vit.vit_small_patch16_384),
11
+ _make_vit(vit.vit_base_patch16_384),
12
+ _make_vit(vit.vit_base_patch8_224),
13
+ _make_vit(vit.vit_large_patch16_384),
14
+ ]
15
+ model_names = [
16
+ "vit_small_patch16_384",
17
+ "vit_base_patch16_384",
18
+ "vit_base_patch8_224",
19
+ "vit_large_patch16_384",
20
+ ]
21
+ imagenet_encoders = list(map(_make_torchscripted_encoder, vit_backbones))
22
+ return {name: model for name, model in zip(model_names, imagenet_encoders)}
23
+
24
+
25
+ def _make_torchscripted_encoder(vit_backbone) -> torch.jit.ScriptModule:
26
+ dummy_input = torch.testing.make_tensor(
27
+ (2, 6, 256, 256),
28
+ low=0,
29
+ high=255,
30
+ dtype=torch.uint8,
31
+ device=torch.device("cpu"),
32
+ )
33
+ encoder = torch.nn.Sequential(
34
+ Normalizer(),
35
+ torch.nn.LazyInstanceNorm2d(
36
+ affine=False, track_running_stats=False
37
+ ), # this module performs self-standardization, very important
38
+ vit_backbone,
39
+ ).to(device="cpu")
40
+ _ = encoder(dummy_input) # get those lazy modules built
41
+ return torch.jit.freeze(torch.jit.script(encoder.eval()))
42
+
43
+
44
+ def _make_vit(constructor):
45
+ return constructor(
46
+ pretrained=True, # download imagenet weights
47
+ img_size=256, # 256x256 crops
48
+ in_chans=6, # we expect 6-channel microscopy images
49
+ num_classes=0,
50
+ fc_norm=None,
51
+ class_token=True,
52
+ global_pool="avg", # minimal perf diff btwn "cls" and "avg"
53
+ )
54
+
55
+
56
+ class Normalizer(torch.nn.Module):
57
+ def forward(self, pixels: torch.Tensor) -> torch.Tensor:
58
+ pixels = pixels.float()
59
+ pixels /= 255.0
60
+ return pixels