Kian Kenyon-Dean
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,2 +1,34 @@
|
|
1 |
-
#
|
2 |
Official repo for Recursion's accepted spotlight paper at NeurIPS 2023 Generative AI & Biology workshop.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Masked Autoencoders are Scalable Learners of Cellular Morphology
|
2 |
Official repo for Recursion's accepted spotlight paper at NeurIPS 2023 Generative AI & Biology workshop.
|
3 |
+
|
4 |
+
Paper: https://arxiv.org/abs/2309.16064
|
5 |
+
|
6 |
+
![vit_diff_mask_ratios](https://github.com/recursionpharma/maes_microscopy/assets/109550980/409ac47b-a7d4-4158-b030-a88234e2b21f)
|
7 |
+
|
8 |
+
## Provided code
|
9 |
+
The baseline Vision Transformer architecture backbone used in this work can be built with the following code snippet from Timm:
|
10 |
+
```
|
11 |
+
import timm.models.vision_transformer as vit
|
12 |
+
|
13 |
+
def vit_base_patch16_256(**kwargs):
|
14 |
+
default_kwargs = dict(
|
15 |
+
img_size=256,
|
16 |
+
in_chans=6,
|
17 |
+
num_classes=0,
|
18 |
+
fc_norm=None,
|
19 |
+
class_token=True,
|
20 |
+
drop_path_rate=0.1,
|
21 |
+
init_values=0.0001,
|
22 |
+
block_fn=vit.ParallelScalingBlock,
|
23 |
+
qkv_bias=False,
|
24 |
+
qk_norm=True,
|
25 |
+
)
|
26 |
+
for k, v in kwargs.items():
|
27 |
+
default_kwargs[k] = v
|
28 |
+
return vit.vit_base_patch16_224(**default_kwargs)
|
29 |
+
```
|
30 |
+
|
31 |
+
Additional code will be released as the date of the workshop gets closer.
|
32 |
+
|
33 |
+
## Provided models
|
34 |
+
Stay tuned...
|