OpenPhenom / huggingface_mae.py
recursionaut's picture
testing files upload
f489a59 verified
raw
history blame
10.9 kB
from typing import Dict, Tuple, Union
import torch
import torch.nn as nn
from transformers import PretrainedConfig, PreTrainedModel
from loss import FourierLoss
from normalizer import Normalizer
from mae_modules import CAMAEDecoder, MAEDecoder, MAEEncoder
from mae_utils import flatten_images
from vit import (
generate_2d_sincos_pos_embeddings,
sincos_positional_encoding_vit,
vit_small_patch16_256,
)
TensorDict = Dict[str, torch.Tensor]
class MAEConfig(PretrainedConfig):
model_type = "MAE"
def __init__(
self,
mask_ratio=0.75,
encoder=None,
decoder=None,
loss=None,
optimizer=None,
input_norm=None,
fourier_loss=None,
fourier_loss_weight=0.0,
lr_scheduler=None,
use_MAE_weight_init=False,
crop_size=-1,
mask_fourier_loss=True,
return_channelwise_embeddings=False,
**kwargs,
):
super().__init__(**kwargs)
self.mask_ratio = mask_ratio
self.encoder = encoder
self.decoder = decoder
self.loss = loss
self.optimizer = optimizer
self.input_norm = input_norm
self.fourier_loss = fourier_loss
self.fourier_loss_weight = fourier_loss_weight
self.lr_scheduler = lr_scheduler
self.use_MAE_weight_init = use_MAE_weight_init
self.crop_size = crop_size
self.mask_fourier_loss = mask_fourier_loss
self.return_channelwise_embeddings = return_channelwise_embeddings
class MAEModel(PreTrainedModel):
config_class = MAEConfig
# Loss metrics
TOTAL_LOSS = "loss"
RECON_LOSS = "reconstruction_loss"
FOURIER_LOSS = "fourier_loss"
def __init__(self, config: MAEConfig):
super().__init__(config)
self.mask_ratio = config.mask_ratio
# Could use Hydra to instantiate instead
self.encoder = MAEEncoder(
vit_backbone=sincos_positional_encoding_vit(
vit_backbone=vit_small_patch16_256(global_pool="avg")
),
max_in_chans=11, # upper limit on number of input channels
channel_agnostic=True,
)
self.decoder = CAMAEDecoder(
depth=8,
embed_dim=512,
mlp_ratio=4,
norm_layer=nn.LayerNorm,
num_heads=16,
num_modalities=6,
qkv_bias=True,
tokens_per_modality=256,
)
self.input_norm = torch.nn.Sequential(
Normalizer(),
nn.InstanceNorm2d(None, affine=False, track_running_stats=False),
)
self.fourier_loss_weight = config.fourier_loss_weight
self.mask_fourier_loss = config.mask_fourier_loss
self.return_channelwise_embeddings = config.return_channelwise_embeddings
self.tokens_per_channel = 256 # hardcode the number of tokens per channel since we are patch16 crop 256
# loss stuff
self.loss = torch.nn.MSELoss(reduction="none")
self.fourier_loss = FourierLoss(num_multimodal_modalities=6)
if self.fourier_loss_weight > 0 and self.fourier_loss is None:
raise ValueError(
"FourierLoss weight is activated but no fourier_loss was defined in constructor"
)
elif self.fourier_loss_weight >= 1:
raise ValueError(
"FourierLoss weight is too large to do mixing factor, weight should be < 1"
)
self.patch_size = int(self.encoder.vit_backbone.patch_embed.patch_size[0])
# projection layer between the encoder and decoder
self.encoder_decoder_proj = nn.Linear(
self.encoder.embed_dim, self.decoder.embed_dim, bias=True
)
self.decoder_pred = nn.Linear(
self.decoder.embed_dim,
self.patch_size**2
* (1 if self.encoder.channel_agnostic else self.in_chans),
bias=True,
) # linear layer from decoder embedding to input dims
# overwrite decoder pos embeddings based on encoder params
self.decoder.pos_embeddings = generate_2d_sincos_pos_embeddings( # type: ignore[assignment]
self.decoder.embed_dim,
length=self.encoder.vit_backbone.patch_embed.grid_size[0],
use_class_token=self.encoder.vit_backbone.cls_token is not None,
num_modality=(
self.decoder.num_modalities if self.encoder.channel_agnostic else 1
),
)
if config.use_MAE_weight_init:
w = self.encoder.vit_backbone.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
torch.nn.init.normal_(self.encoder.vit_backbone.cls_token, std=0.02)
torch.nn.init.normal_(self.decoder.mask_token, std=0.02)
self.apply(self._MAE_init_weights)
def setup(self, stage: str) -> None:
super().setup(stage)
def _MAE_init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@staticmethod
def decode_to_reconstruction(
encoder_latent: torch.Tensor,
ind_restore: torch.Tensor,
proj: torch.nn.Module,
decoder: MAEDecoder | CAMAEDecoder,
pred: torch.nn.Module,
) -> torch.Tensor:
"""Feed forward the encoder latent through the decoders necessary projections and transformations."""
decoder_latent_projection = proj(
encoder_latent
) # projection from encoder.embed_dim to decoder.embed_dim
decoder_tokens = decoder.forward_masked(
decoder_latent_projection, ind_restore
) # decoder.embed_dim output
predicted_reconstruction = pred(
decoder_tokens
) # linear projection to input dim
return predicted_reconstruction[:, 1:, :] # drop class token
def forward(
self, imgs: torch.Tensor, constant_noise: Union[torch.Tensor, None] = None
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
imgs = self.input_norm(imgs)
latent, mask, ind_restore = self.encoder.forward_masked(
imgs, self.mask_ratio, constant_noise
) # encoder blocks
reconstruction = self.decode_to_reconstruction(
latent,
ind_restore,
self.encoder_decoder_proj,
self.decoder,
self.decoder_pred,
)
return latent, reconstruction, mask
def compute_MAE_loss(
self,
reconstruction: torch.Tensor,
img: torch.Tensor,
mask: torch.Tensor,
) -> Tuple[torch.Tensor, Dict[str, float]]:
"""Computes final loss and returns specific values of component losses for metric reporting."""
loss_dict = {}
img = self.input_norm(img)
target_flattened = flatten_images(
img,
patch_size=self.patch_size,
channel_agnostic=self.encoder.channel_agnostic,
)
loss: torch.Tensor = self.loss(
reconstruction, target_flattened
) # should be with MSE or MAE (L1) with reduction='none'
loss = loss.mean(
dim=-1
) # average over embedding dim -> mean loss per patch (N,L)
loss = (loss * mask).sum() / mask.sum() # mean loss on masked patches only
loss_dict[self.RECON_LOSS] = loss.item()
# compute fourier loss
if self.fourier_loss_weight > 0:
floss: torch.Tensor = self.fourier_loss(reconstruction, target_flattened)
if not self.mask_fourier_loss:
floss = floss.mean()
else:
floss = floss.mean(dim=-1)
floss = (floss * mask).sum() / mask.sum()
loss_dict[self.FOURIER_LOSS] = floss.item()
# here we use a mixing factor to keep the loss magnitude appropriate with fourier
if self.fourier_loss_weight > 0:
loss = (1 - self.fourier_loss_weight) * loss + (
self.fourier_loss_weight * floss
)
return loss, loss_dict
def training_step(self, batch: TensorDict, batch_idx: int) -> TensorDict:
img = batch["pixels"]
latent, reconstruction, mask = self(img.clone())
full_loss, loss_dict = self.compute_MAE_loss(reconstruction, img.float(), mask)
return {
"loss": full_loss,
**loss_dict, # type: ignore[dict-item]
}
def validation_step(self, batch: TensorDict, batch_idx: int) -> TensorDict:
return self.training_step(batch, batch_idx)
def update_metrics(self, outputs: TensorDict, batch: TensorDict) -> None:
self.metrics["lr"].update(value=self.lr_scheduler.get_last_lr())
for key, value in outputs.items():
if key.endswith("loss"):
self.metrics[key].update(value)
def on_validation_batch_end( # type: ignore[override]
self,
outputs: TensorDict,
batch: TensorDict,
batch_idx: int,
dataloader_idx: int = 0,
) -> None:
super().on_validation_batch_end(outputs, batch, batch_idx, dataloader_idx)
def predict(self, imgs: torch.Tensor) -> torch.Tensor:
imgs = self.input_norm(imgs)
X = self.encoder.vit_backbone.forward_features(
imgs
) # 3d tensor N x num_tokens x dim
if self.return_channelwise_embeddings:
N, _, d = X.shape
num_channels = imgs.shape[1]
X_reshaped = X[:, 1:, :].view(N, num_channels, self.tokens_per_channel, d)
pooled_segments = X_reshaped.mean(
dim=2
) # Resulting shape: (N, num_channels, d)
latent = pooled_segments.view(N, num_channels * d).contiguous()
else:
latent = X[:, 1:, :].mean(dim=1) # 1 + 256 * C tokens
return latent
def save_pretrained(self, save_directory: str, **kwargs):
filename = kwargs.pop("filename", "model.safetensors")
modelpath = f"{save_directory}/{filename}"
self.config.save_pretrained(save_directory)
torch.save({"state_dict": self.state_dict()}, modelpath)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
filename = kwargs.pop("filename", "model.safetensors")
modelpath = f"{pretrained_model_name_or_path}/{filename}"
config = MAEConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
state_dict = torch.load(modelpath, map_location="cpu")
model = cls(config, *model_args, **kwargs)
model.load_state_dict(state_dict["state_dict"])
return model