File size: 9,879 Bytes
6ded986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# © Recursion Pharmaceuticals 2024
import timm.models.vision_transformer as vit
import torch
def generate_2d_sincos_pos_embeddings(
embedding_dim: int,
length: int,
scale: float = 10000.0,
use_class_token: bool = True,
num_modality: int = 1,
) -> torch.nn.Parameter:
"""
Generate 2Dimensional sin/cosine positional embeddings
Parameters
----------
embedding_dim : int
embedding dimension used in vit
length : int
number of tokens along height or width of image after patching (assuming square)
scale : float
scale for sin/cos functions
use_class_token : bool
True - add zero vector to be added to class_token, False - no vector added
num_modality: number of modalities. If 0, a single modality is assumed.
Otherwise one-hot modality encoding is added and sincos encoding size is appropriately reduced.
Returns
-------
positional_encoding : torch.Tensor
positional encoding to add to vit patch encodings
[num_modality*length*length, embedding_dim] or [1+num_modality*length*length, embedding_dim]
(w/ or w/o cls_token)
"""
linear_positions = torch.arange(length, dtype=torch.float32)
height_mesh, width_mesh = torch.meshgrid(
linear_positions, linear_positions, indexing="ij"
)
positional_dim = embedding_dim // 4 # accomodate h and w x cos and sin embeddings
positional_weights = (
torch.arange(positional_dim, dtype=torch.float32) / positional_dim
)
positional_weights = 1.0 / (scale**positional_weights)
height_weights = torch.outer(height_mesh.flatten(), positional_weights)
width_weights = torch.outer(width_mesh.flatten(), positional_weights)
positional_encoding = torch.cat(
[
torch.sin(height_weights),
torch.cos(height_weights),
torch.sin(width_weights),
torch.cos(width_weights),
],
dim=1,
)[None, :, :]
# repeat positional encoding for multiple channel modalities
positional_encoding = positional_encoding.repeat(1, num_modality, 1)
if use_class_token:
class_token = torch.zeros([1, 1, embedding_dim], dtype=torch.float32)
positional_encoding = torch.cat([class_token, positional_encoding], dim=1)
positional_encoding = torch.nn.Parameter(positional_encoding, requires_grad=False)
return positional_encoding
class ChannelAgnosticPatchEmbed(vit.PatchEmbed): # type: ignore[misc]
def __init__(
self,
img_size: int,
patch_size: int,
embed_dim: int,
bias: bool = True,
) -> None:
super().__init__(
img_size=img_size,
patch_size=patch_size,
in_chans=1, # in_chans is used by self.proj, which we override anyway
embed_dim=embed_dim,
norm_layer=None,
flatten=False,
bias=bias,
)
# channel-agnostic MAE has a single projection for all chans
self.proj = torch.nn.Conv2d(
1, embed_dim, kernel_size=patch_size, stride=patch_size, bias=bias
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
in_chans = x.shape[1]
x = torch.stack(
[self.proj(x[:, i : i + 1]) for i in range(in_chans)], dim=2
) # single project for all chans
x = x.flatten(2).transpose(1, 2) # BCMHW -> BNC
return x
class ChannelAgnosticViT(vit.VisionTransformer): # type: ignore[misc]
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
# rewrite https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L586
to_cat = []
if self.cls_token is not None:
to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
# TODO: upgrade timm to get access to register tokens
# if self.vit_backbone.reg_token is not None:
# to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
# MAIN DIFFERENCE with Timm - we DYNAMICALLY ADDING POS EMBEDDINGS based on shape of inputs
# this supports having CA-MAEs actually be channel-agnostic at inference time
if self.no_embed_class:
x = x + self.pos_embed[:, : x.shape[1]]
if to_cat:
x = torch.cat(to_cat + [x], dim=1)
else:
if to_cat:
x = torch.cat(to_cat + [x], dim=1)
x = x + self.pos_embed[:, : x.shape[1]]
return self.pos_drop(x) # type: ignore[no-any-return]
def channel_agnostic_vit(
vit_backbone: vit.VisionTransformer, max_in_chans: int
) -> vit.VisionTransformer:
# replace patch embedding with channel-agnostic version
vit_backbone.patch_embed = ChannelAgnosticPatchEmbed(
img_size=vit_backbone.patch_embed.img_size[0],
patch_size=vit_backbone.patch_embed.patch_size[0],
embed_dim=vit_backbone.embed_dim,
)
# replace positional embedding with channel-agnostic version
vit_backbone.pos_embed = generate_2d_sincos_pos_embeddings(
embedding_dim=vit_backbone.embed_dim,
length=vit_backbone.patch_embed.grid_size[0],
use_class_token=vit_backbone.cls_token is not None,
num_modality=max_in_chans,
)
# change the class to be ChannelAgnostic so that it actually uses the new _pos_embed
vit_backbone.__class__ = ChannelAgnosticViT
return vit_backbone
def sincos_positional_encoding_vit(
vit_backbone: vit.VisionTransformer, scale: float = 10000.0
) -> vit.VisionTransformer:
"""Attaches no-grad sin-cos positional embeddings to a pre-constructed ViT backbone model.
Parameters
----------
vit_backbone : timm.models.vision_transformer.VisionTransformer
the constructed vision transformer from timm
scale : float (default 10000.0)
hyperparameter for sincos positional embeddings, recommend keeping at 10,000
Returns
-------
timm.models.vision_transformer.VisionTransformer
the same ViT but with fixed no-grad positional encodings to add to vit patch encodings
"""
# length: number of tokens along height or width of image after patching (assuming square)
length = (
vit_backbone.patch_embed.img_size[0] // vit_backbone.patch_embed.patch_size[0]
)
pos_embeddings = generate_2d_sincos_pos_embeddings(
vit_backbone.embed_dim,
length=length,
scale=scale,
use_class_token=vit_backbone.cls_token is not None,
)
# note, if the model had weight_init == 'skip', this might get overwritten
vit_backbone.pos_embed = pos_embeddings
return vit_backbone
def vit_small_patch16_256(**kwargs):
default_kwargs = dict(
img_size=256,
in_chans=6,
num_classes=0,
fc_norm=None,
class_token=True,
drop_path_rate=0.1,
init_values=0.0001,
block_fn=vit.ParallelScalingBlock,
qkv_bias=False,
qk_norm=True,
)
for k, v in kwargs.items():
default_kwargs[k] = v
return vit.vit_small_patch16_224(**default_kwargs)
def vit_small_patch32_512(**kwargs):
default_kwargs = dict(
img_size=512,
in_chans=6,
num_classes=0,
fc_norm=None,
class_token=True,
drop_path_rate=0.1,
init_values=0.0001,
block_fn=vit.ParallelScalingBlock,
qkv_bias=False,
qk_norm=True,
)
for k, v in kwargs.items():
default_kwargs[k] = v
return vit.vit_small_patch32_384(**default_kwargs)
def vit_base_patch8_256(**kwargs):
default_kwargs = dict(
img_size=256,
in_chans=6,
num_classes=0,
fc_norm=None,
class_token=True,
drop_path_rate=0.1,
init_values=0.0001,
block_fn=vit.ParallelScalingBlock,
qkv_bias=False,
qk_norm=True,
)
for k, v in kwargs.items():
default_kwargs[k] = v
return vit.vit_base_patch8_224(**default_kwargs)
def vit_base_patch16_256(**kwargs):
default_kwargs = dict(
img_size=256,
in_chans=6,
num_classes=0,
fc_norm=None,
class_token=True,
drop_path_rate=0.1,
init_values=0.0001,
block_fn=vit.ParallelScalingBlock,
qkv_bias=False,
qk_norm=True,
)
for k, v in kwargs.items():
default_kwargs[k] = v
return vit.vit_base_patch16_224(**default_kwargs)
def vit_base_patch32_512(**kwargs):
default_kwargs = dict(
img_size=512,
in_chans=6,
num_classes=0,
fc_norm=None,
class_token=True,
drop_path_rate=0.1,
init_values=0.0001,
block_fn=vit.ParallelScalingBlock,
qkv_bias=False,
qk_norm=True,
)
for k, v in kwargs.items():
default_kwargs[k] = v
return vit.vit_base_patch32_384(**default_kwargs)
def vit_large_patch8_256(**kwargs):
default_kwargs = dict(
img_size=256,
in_chans=6,
num_classes=0,
fc_norm=None,
class_token=True,
patch_size=8,
embed_dim=1024,
depth=24,
num_heads=16,
drop_path_rate=0.3,
init_values=0.0001,
block_fn=vit.ParallelScalingBlock,
qkv_bias=False,
qk_norm=True,
)
for k, v in kwargs.items():
default_kwargs[k] = v
return vit.VisionTransformer(**default_kwargs)
def vit_large_patch16_256(**kwargs):
default_kwargs = dict(
img_size=256,
in_chans=6,
num_classes=0,
fc_norm=None,
class_token=True,
drop_path_rate=0.3,
init_values=0.0001,
block_fn=vit.ParallelScalingBlock,
qkv_bias=False,
qk_norm=True,
)
for k, v in kwargs.items():
default_kwargs[k] = v
return vit.vit_large_patch16_384(**default_kwargs)
|