File size: 2,159 Bytes
1f5751e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: finetuned_Wav2Vec2_on_ATCOSIM
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned_Wav2Vec2_on_ATCOSIM
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1707
- Wer: 0.1170
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.6927 | 2.5 | 400 | 0.5557 | 0.4100 |
| 0.3288 | 4.99 | 800 | 0.2382 | 0.1943 |
| 0.1856 | 7.49 | 1200 | 0.1957 | 0.1699 |
| 0.1325 | 9.99 | 1600 | 0.1845 | 0.1572 |
| 0.1018 | 12.48 | 2000 | 0.1771 | 0.1534 |
| 0.0899 | 14.98 | 2400 | 0.1637 | 0.1356 |
| 0.0722 | 17.48 | 2800 | 0.1812 | 0.1409 |
| 0.0596 | 19.98 | 3200 | 0.1747 | 0.1323 |
| 0.046 | 22.47 | 3600 | 0.1505 | 0.1307 |
| 0.037 | 24.97 | 4000 | 0.1705 | 0.1224 |
| 0.0294 | 27.47 | 4400 | 0.1614 | 0.1164 |
| 0.0249 | 29.96 | 4800 | 0.1707 | 0.1170 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|