rdhika commited on
Commit
60b643c
·
verified ·
1 Parent(s): f4f276d

Updated model card with new performance metrics and versioning information

Browse files
Files changed (1) hide show
  1. README.md +55 -3
README.md CHANGED
@@ -1,3 +1,55 @@
1
- ---
2
- license: unknown
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - mteb/imdb
5
+ - lmqg/qg_squad
6
+ - commoncrawl/statistics
7
+ language:
8
+ - en
9
+ - es
10
+ - fr
11
+ metrics:
12
+ - accuracy
13
+ - f1
14
+ - perplexity
15
+ - bleu
16
+ base_model:
17
+ - google-bert/bert-base-uncased
18
+ new_version: mradermacher/Slm-4B-Instruct-v1.0.1-GGUF
19
+ pipeline_tag: text-classification
20
+ library_name: transformers
21
+ tags:
22
+ - text-classification
23
+ - sentiment-analysis
24
+ - NLP
25
+ - transformer
26
+ ---
27
+
28
+ # BasePlate
29
+
30
+ ## Model Description
31
+ The **BasePlate** model is a [brief description of what the model does, e.g., "a transformer-based model fine-tuned for text classification tasks"].
32
+
33
+ It can be used for [list the tasks it can perform, e.g., text generation, sentiment analysis, etc.]. The model is based on [mention the underlying architecture or base model, e.g., BERT, GPT-2, etc.].
34
+
35
+ ### Model Features:
36
+ - Task: [e.g., Text Classification, Question Answering, Summarization]
37
+ - Languages: [List supported languages, e.g., English, French, Spanish, etc.]
38
+ - Dataset: [Name of the dataset(s) used to train the model, e.g., "Fine-tuned on the IMDB reviews dataset."]
39
+ - Performance: [Optional: Describe the model's performance metrics, e.g., "Achieved an F1 score of 92% on the test set."]
40
+
41
+ ## Intended Use
42
+ This model is intended for [intended use cases, e.g., text classification tasks, content moderation, etc.].
43
+
44
+ ### How to Use:
45
+ Here’s a simple usage example in Python using the `transformers` library:
46
+ ```python
47
+ from transformers import pipeline
48
+
49
+ # Load the pre-trained model
50
+ model = pipeline('text-classification', model='huggingface/BasePlate')
51
+
52
+ # Example usage
53
+ text = "This is an example sentence."
54
+ result = model(text)
55
+ print(result)