--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6434 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8264 | 1.0 | 150 | 1.6957 | 0.57 | | 1.0773 | 2.0 | 300 | 1.1566 | 0.61 | | 0.8647 | 3.0 | 450 | 0.9786 | 0.71 | | 0.6303 | 4.0 | 600 | 0.8904 | 0.71 | | 0.4542 | 5.0 | 750 | 0.6887 | 0.8 | | 0.1867 | 6.0 | 900 | 0.5686 | 0.83 | | 0.1188 | 7.0 | 1050 | 0.6222 | 0.83 | | 0.1415 | 8.0 | 1200 | 0.7066 | 0.83 | | 0.0406 | 9.0 | 1350 | 0.6119 | 0.87 | | 0.0331 | 10.0 | 1500 | 0.6434 | 0.84 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0