|
import importlib |
|
import streamlit as st |
|
import torch |
|
import cv2 |
|
import numpy as np |
|
import PIL |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from tqdm import trange |
|
import io, os |
|
from torch import autocast |
|
from einops import rearrange, repeat |
|
from torchvision.utils import make_grid |
|
from pytorch_lightning import seed_everything |
|
from contextlib import nullcontext |
|
|
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.models.diffusion.plms import PLMSSampler |
|
from ldm.models.diffusion.dpm_solver import DPMSolverSampler |
|
|
|
torch.set_grad_enabled(False) |
|
|
|
PROMPTS_ROOT = "scripts/prompts/" |
|
SAVE_PATH = "outputs/demo/stable-unclip/" |
|
|
|
VERSION2SPECS = { |
|
"Stable unCLIP-L": {"H": 768, "W": 768, "C": 4, "f": 8}, |
|
"Stable unOpenCLIP-H": {"H": 768, "W": 768, "C": 4, "f": 8}, |
|
"Full Karlo": {} |
|
} |
|
|
|
|
|
def get_obj_from_str(string, reload=False): |
|
module, cls = string.rsplit(".", 1) |
|
importlib.invalidate_caches() |
|
if reload: |
|
module_imp = importlib.import_module(module) |
|
importlib.reload(module_imp) |
|
return getattr(importlib.import_module(module, package=None), cls) |
|
|
|
|
|
def instantiate_from_config(config): |
|
if not "target" in config: |
|
raise KeyError("Expected key `target` to instantiate.") |
|
return get_obj_from_str(config["target"])(**config.get("params", dict())) |
|
|
|
|
|
def get_interactive_image(key=None): |
|
image = st.file_uploader("Input", type=["jpg", "JPEG", "png"], key=key) |
|
if image is not None: |
|
image = Image.open(image) |
|
if not image.mode == "RGB": |
|
image = image.convert("RGB") |
|
return image |
|
|
|
|
|
def load_img(display=True, key=None): |
|
image = get_interactive_image(key=key) |
|
if display: |
|
st.image(image) |
|
w, h = image.size |
|
print(f"loaded input image of size ({w}, {h})") |
|
w, h = map(lambda x: x - x % 64, (w, h)) |
|
image = image.resize((w, h), resample=PIL.Image.LANCZOS) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = image[None].transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
return 2. * image - 1. |
|
|
|
|
|
def get_init_img(batch_size=1, key=None): |
|
init_image = load_img(key=key).cuda() |
|
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size) |
|
return init_image |
|
|
|
|
|
def sample( |
|
model, |
|
prompt, |
|
n_runs=3, |
|
n_samples=2, |
|
H=512, |
|
W=512, |
|
C=4, |
|
f=8, |
|
scale=10.0, |
|
ddim_steps=50, |
|
ddim_eta=0.0, |
|
callback=None, |
|
skip_single_save=False, |
|
save_grid=True, |
|
ucg_schedule=None, |
|
negative_prompt="", |
|
adm_cond=None, |
|
adm_uc=None, |
|
use_full_precision=False, |
|
only_adm_cond=False |
|
): |
|
batch_size = n_samples |
|
precision_scope = autocast if not use_full_precision else nullcontext |
|
|
|
if use_full_precision: st.warning(f"Running {model.__class__.__name__} at full precision.") |
|
if isinstance(prompt, str): |
|
prompt = [prompt] |
|
prompts = batch_size * prompt |
|
|
|
outputs = st.empty() |
|
|
|
with precision_scope("cuda"): |
|
with model.ema_scope(): |
|
all_samples = list() |
|
for n in trange(n_runs, desc="Sampling"): |
|
shape = [C, H // f, W // f] |
|
if not only_adm_cond: |
|
uc = None |
|
if scale != 1.0: |
|
uc = model.get_learned_conditioning(batch_size * [negative_prompt]) |
|
if isinstance(prompts, tuple): |
|
prompts = list(prompts) |
|
c = model.get_learned_conditioning(prompts) |
|
|
|
if adm_cond is not None: |
|
if adm_cond.shape[0] == 1: |
|
adm_cond = repeat(adm_cond, '1 ... -> b ...', b=batch_size) |
|
if adm_uc is None: |
|
st.warning("Not guiding via c_adm") |
|
adm_uc = adm_cond |
|
else: |
|
if adm_uc.shape[0] == 1: |
|
adm_uc = repeat(adm_uc, '1 ... -> b ...', b=batch_size) |
|
if not only_adm_cond: |
|
c = {"c_crossattn": [c], "c_adm": adm_cond} |
|
uc = {"c_crossattn": [uc], "c_adm": adm_uc} |
|
else: |
|
c = adm_cond |
|
uc = adm_uc |
|
samples_ddim, _ = sampler.sample(S=ddim_steps, |
|
conditioning=c, |
|
batch_size=batch_size, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=scale, |
|
unconditional_conditioning=uc, |
|
eta=ddim_eta, |
|
x_T=None, |
|
callback=callback, |
|
ucg_schedule=ucg_schedule |
|
) |
|
x_samples = model.decode_first_stage(samples_ddim) |
|
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
|
if not skip_single_save: |
|
base_count = len(os.listdir(os.path.join(SAVE_PATH, "samples"))) |
|
for x_sample in x_samples: |
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') |
|
Image.fromarray(x_sample.astype(np.uint8)).save( |
|
os.path.join(SAVE_PATH, "samples", f"{base_count:09}.png")) |
|
base_count += 1 |
|
|
|
all_samples.append(x_samples) |
|
|
|
|
|
grid = torch.stack(all_samples, 0) |
|
grid = rearrange(grid, 'n b c h w -> (n h) (b w) c') |
|
outputs.image(grid.cpu().numpy()) |
|
|
|
|
|
grid = Image.fromarray((255. * grid.cpu().numpy()).astype(np.uint8)) |
|
if save_grid: |
|
grid_count = len(os.listdir(SAVE_PATH)) - 1 |
|
grid.save(os.path.join(SAVE_PATH, f'grid-{grid_count:06}.png')) |
|
|
|
return x_samples |
|
|
|
|
|
def make_oscillating_guidance_schedule(num_steps, max_weight=15., min_weight=1.): |
|
schedule = list() |
|
for i in range(num_steps): |
|
if float(i / num_steps) < 0.1: |
|
schedule.append(max_weight) |
|
elif i % 2 == 0: |
|
schedule.append(min_weight) |
|
else: |
|
schedule.append(max_weight) |
|
print(f"OSCILLATING GUIDANCE SCHEDULE: \n {schedule}") |
|
return schedule |
|
|
|
|
|
def torch2np(x): |
|
x = ((x + 1.0) * 127.5).clamp(0, 255).to(dtype=torch.uint8) |
|
x = x.permute(0, 2, 3, 1).detach().cpu().numpy() |
|
return x |
|
|
|
|
|
@st.cache(allow_output_mutation=True, suppress_st_warning=True) |
|
def init(version="Stable unCLIP-L", load_karlo_prior=False): |
|
state = dict() |
|
if not "model" in state: |
|
if version == "Stable unCLIP-L": |
|
config = "configs/stable-diffusion/v2-1-stable-unclip-l-inference.yaml" |
|
ckpt = "checkpoints/sd21-unclip-l.ckpt" |
|
|
|
elif version == "Stable unOpenCLIP-H": |
|
config = "configs/stable-diffusion/v2-1-stable-unclip-h-inference.yaml" |
|
ckpt = "checkpoints/sd21-unclip-h.ckpt" |
|
|
|
elif version == "Full Karlo": |
|
from ldm.modules.karlo.kakao.sampler import T2ISampler |
|
st.info("Loading full KARLO..") |
|
karlo = T2ISampler.from_pretrained( |
|
root_dir="checkpoints/karlo_models", |
|
clip_model_path="ViT-L-14.pt", |
|
clip_stat_path="ViT-L-14_stats.th", |
|
sampling_type="default", |
|
) |
|
state["karlo_prior"] = karlo |
|
state["msg"] = "loaded full Karlo" |
|
return state |
|
else: |
|
raise ValueError(f"version {version} unknown!") |
|
|
|
config = OmegaConf.load(config) |
|
model, msg = load_model_from_config(config, ckpt, vae_sd=None) |
|
state["msg"] = msg |
|
|
|
if load_karlo_prior: |
|
from ldm.modules.karlo.kakao.sampler import PriorSampler |
|
st.info("Loading KARLO CLIP prior...") |
|
karlo_prior = PriorSampler.from_pretrained( |
|
root_dir="checkpoints/karlo_models", |
|
clip_model_path="ViT-L-14.pt", |
|
clip_stat_path="ViT-L-14_stats.th", |
|
sampling_type="default", |
|
) |
|
state["karlo_prior"] = karlo_prior |
|
state["model"] = model |
|
state["ckpt"] = ckpt |
|
state["config"] = config |
|
return state |
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False, vae_sd=None): |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
msg = None |
|
if "global_step" in pl_sd: |
|
msg = f"This is global step {pl_sd['global_step']}. " |
|
if "model_ema.num_updates" in pl_sd["state_dict"]: |
|
msg += f"And we got {pl_sd['state_dict']['model_ema.num_updates']} EMA updates." |
|
global_step = pl_sd.get("global_step", "?") |
|
sd = pl_sd["state_dict"] |
|
if vae_sd is not None: |
|
for k in sd.keys(): |
|
if "first_stage" in k: |
|
sd[k] = vae_sd[k[len("first_stage_model."):]] |
|
|
|
model = instantiate_from_config(config.model) |
|
m, u = model.load_state_dict(sd, strict=False) |
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
model.cuda() |
|
model.eval() |
|
print(f"Loaded global step {global_step}") |
|
return model, msg |
|
|
|
|
|
if __name__ == "__main__": |
|
st.title("Stable unCLIP") |
|
mode = "txt2img" |
|
version = st.selectbox("Model Version", list(VERSION2SPECS.keys()), 0) |
|
use_karlo_prior = version in ["Stable unCLIP-L"] and st.checkbox("Use KARLO prior", False) |
|
state = init(version=version, load_karlo_prior=use_karlo_prior) |
|
prompt = st.text_input("Prompt", "a professional photograph") |
|
negative_prompt = st.text_input("Negative Prompt", "") |
|
scale = st.number_input("cfg-scale", value=10., min_value=-100., max_value=100.) |
|
number_rows = st.number_input("num rows", value=2, min_value=1, max_value=10) |
|
number_cols = st.number_input("num cols", value=2, min_value=1, max_value=10) |
|
steps = st.sidebar.number_input("steps", value=20, min_value=1, max_value=1000) |
|
eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.) |
|
force_full_precision = st.sidebar.checkbox("Force FP32", False) |
|
if version != "Full Karlo": |
|
H = st.sidebar.number_input("H", value=VERSION2SPECS[version]["H"], min_value=64, max_value=2048) |
|
W = st.sidebar.number_input("W", value=VERSION2SPECS[version]["W"], min_value=64, max_value=2048) |
|
C = VERSION2SPECS[version]["C"] |
|
f = VERSION2SPECS[version]["f"] |
|
|
|
SAVE_PATH = os.path.join(SAVE_PATH, version) |
|
os.makedirs(os.path.join(SAVE_PATH, "samples"), exist_ok=True) |
|
|
|
seed = st.sidebar.number_input("seed", value=42, min_value=0, max_value=int(1e9)) |
|
seed_everything(seed) |
|
|
|
ucg_schedule = None |
|
sampler = st.sidebar.selectbox("Sampler", ["DDIM", "DPM"], 0) |
|
if version == "Full Karlo": |
|
pass |
|
else: |
|
if sampler == "DPM": |
|
sampler = DPMSolverSampler(state["model"]) |
|
elif sampler == "DDIM": |
|
sampler = DDIMSampler(state["model"]) |
|
else: |
|
raise ValueError(f"unknown sampler {sampler}!") |
|
|
|
adm_cond, adm_uc = None, None |
|
if use_karlo_prior: |
|
|
|
karlo_sampler = state["karlo_prior"] |
|
noise_level = None |
|
if state["model"].noise_augmentor is not None: |
|
noise_level = st.number_input("Noise Augmentation for CLIP embeddings", min_value=0, |
|
max_value=state["model"].noise_augmentor.max_noise_level - 1, value=0) |
|
with torch.no_grad(): |
|
karlo_prediction = iter( |
|
karlo_sampler( |
|
prompt=prompt, |
|
bsz=number_cols, |
|
progressive_mode="final", |
|
) |
|
).__next__() |
|
adm_cond = karlo_prediction |
|
if noise_level is not None: |
|
c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat( |
|
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols)) |
|
adm_cond = torch.cat((c_adm, noise_level_emb), 1) |
|
adm_uc = torch.zeros_like(adm_cond) |
|
elif version == "Full Karlo": |
|
pass |
|
else: |
|
num_inputs = st.number_input("Number of Input Images", 1) |
|
|
|
|
|
def make_conditionings_from_input(num=1, key=None): |
|
init_img = get_init_img(batch_size=number_cols, key=key) |
|
with torch.no_grad(): |
|
adm_cond = state["model"].embedder(init_img) |
|
weight = st.slider(f"Weight for Input {num}", min_value=-10., max_value=10., value=1.) |
|
if state["model"].noise_augmentor is not None: |
|
noise_level = st.number_input(f"Noise Augmentation for CLIP embedding of input #{num}", min_value=0, |
|
max_value=state["model"].noise_augmentor.max_noise_level - 1, |
|
value=0, ) |
|
c_adm, noise_level_emb = state["model"].noise_augmentor(adm_cond, noise_level=repeat( |
|
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols)) |
|
adm_cond = torch.cat((c_adm, noise_level_emb), 1) * weight |
|
adm_uc = torch.zeros_like(adm_cond) |
|
return adm_cond, adm_uc, weight |
|
|
|
|
|
adm_inputs = list() |
|
weights = list() |
|
for n in range(num_inputs): |
|
adm_cond, adm_uc, w = make_conditionings_from_input(num=n + 1, key=n) |
|
weights.append(w) |
|
adm_inputs.append(adm_cond) |
|
adm_cond = torch.stack(adm_inputs).sum(0) / sum(weights) |
|
if num_inputs > 1: |
|
if st.checkbox("Apply Noise to Embedding Mix", True): |
|
noise_level = st.number_input(f"Noise Augmentation for averaged CLIP embeddings", min_value=0, |
|
max_value=state["model"].noise_augmentor.max_noise_level - 1, value=50, ) |
|
c_adm, noise_level_emb = state["model"].noise_augmentor( |
|
adm_cond[:, :state["model"].noise_augmentor.time_embed.dim], |
|
noise_level=repeat( |
|
torch.tensor([noise_level]).to(state["model"].device), '1 -> b', b=number_cols)) |
|
adm_cond = torch.cat((c_adm, noise_level_emb), 1) |
|
|
|
if st.button("Sample"): |
|
print("running prompt:", prompt) |
|
st.text("Sampling") |
|
t_progress = st.progress(0) |
|
result = st.empty() |
|
|
|
|
|
def t_callback(t): |
|
t_progress.progress(min((t + 1) / steps, 1.)) |
|
|
|
|
|
if version == "Full Karlo": |
|
outputs = st.empty() |
|
karlo_sampler = state["karlo_prior"] |
|
all_samples = list() |
|
with torch.no_grad(): |
|
for _ in range(number_rows): |
|
karlo_prediction = iter( |
|
karlo_sampler( |
|
prompt=prompt, |
|
bsz=number_cols, |
|
progressive_mode="final", |
|
) |
|
).__next__() |
|
all_samples.append(karlo_prediction) |
|
grid = torch.stack(all_samples, 0) |
|
grid = rearrange(grid, 'n b c h w -> (n h) (b w) c') |
|
outputs.image(grid.cpu().numpy()) |
|
|
|
else: |
|
samples = sample( |
|
state["model"], |
|
prompt, |
|
n_runs=number_rows, |
|
n_samples=number_cols, |
|
H=H, W=W, C=C, f=f, |
|
scale=scale, |
|
ddim_steps=steps, |
|
ddim_eta=eta, |
|
callback=t_callback, |
|
ucg_schedule=ucg_schedule, |
|
negative_prompt=negative_prompt, |
|
adm_cond=adm_cond, adm_uc=adm_uc, |
|
use_full_precision=force_full_precision, |
|
only_adm_cond=False |
|
) |
|
|