|
import sys |
|
import torch |
|
import numpy as np |
|
import streamlit as st |
|
from PIL import Image |
|
from omegaconf import OmegaConf |
|
from einops import repeat, rearrange |
|
from pytorch_lightning import seed_everything |
|
from imwatermark import WatermarkEncoder |
|
|
|
from scripts.txt2img import put_watermark |
|
from ldm.util import instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.data.util import AddMiDaS |
|
|
|
torch.set_grad_enabled(False) |
|
|
|
|
|
@st.cache(allow_output_mutation=True) |
|
def initialize_model(config, ckpt): |
|
config = OmegaConf.load(config) |
|
model = instantiate_from_config(config.model) |
|
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) |
|
|
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
sampler = DDIMSampler(model) |
|
return sampler |
|
|
|
|
|
def make_batch_sd( |
|
image, |
|
txt, |
|
device, |
|
num_samples=1, |
|
model_type="dpt_hybrid" |
|
): |
|
image = np.array(image.convert("RGB")) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
midas_trafo = AddMiDaS(model_type=model_type) |
|
batch = { |
|
"jpg": image, |
|
"txt": num_samples * [txt], |
|
} |
|
batch = midas_trafo(batch) |
|
batch["jpg"] = rearrange(batch["jpg"], 'h w c -> 1 c h w') |
|
batch["jpg"] = repeat(batch["jpg"].to(device=device), "1 ... -> n ...", n=num_samples) |
|
batch["midas_in"] = repeat(torch.from_numpy(batch["midas_in"][None, ...]).to(device=device), "1 ... -> n ...", n=num_samples) |
|
return batch |
|
|
|
|
|
def paint(sampler, image, prompt, t_enc, seed, scale, num_samples=1, callback=None, |
|
do_full_sample=False): |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = sampler.model |
|
seed_everything(seed) |
|
|
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") |
|
wm = "SDV2" |
|
wm_encoder = WatermarkEncoder() |
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) |
|
|
|
with torch.no_grad(),\ |
|
torch.autocast("cuda"): |
|
batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples) |
|
z = model.get_first_stage_encoding(model.encode_first_stage(batch[model.first_stage_key])) |
|
c = model.cond_stage_model.encode(batch["txt"]) |
|
c_cat = list() |
|
for ck in model.concat_keys: |
|
cc = batch[ck] |
|
cc = model.depth_model(cc) |
|
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], |
|
keepdim=True) |
|
display_depth = (cc - depth_min) / (depth_max - depth_min) |
|
st.image(Image.fromarray((display_depth[0, 0, ...].cpu().numpy() * 255.).astype(np.uint8))) |
|
cc = torch.nn.functional.interpolate( |
|
cc, |
|
size=z.shape[2:], |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], |
|
keepdim=True) |
|
cc = 2. * (cc - depth_min) / (depth_max - depth_min) - 1. |
|
c_cat.append(cc) |
|
c_cat = torch.cat(c_cat, dim=1) |
|
|
|
cond = {"c_concat": [c_cat], "c_crossattn": [c]} |
|
|
|
|
|
uc_cross = model.get_unconditional_conditioning(num_samples, "") |
|
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} |
|
if not do_full_sample: |
|
|
|
z_enc = sampler.stochastic_encode(z, torch.tensor([t_enc] * num_samples).to(model.device)) |
|
else: |
|
z_enc = torch.randn_like(z) |
|
|
|
samples = sampler.decode(z_enc, cond, t_enc, unconditional_guidance_scale=scale, |
|
unconditional_conditioning=uc_full, callback=callback) |
|
x_samples_ddim = model.decode_first_stage(samples) |
|
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) |
|
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 |
|
return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] |
|
|
|
|
|
def run(): |
|
st.title("Stable Diffusion Depth2Img") |
|
|
|
sampler = initialize_model(sys.argv[1], sys.argv[2]) |
|
|
|
image = st.file_uploader("Image", ["jpg", "png"]) |
|
if image: |
|
image = Image.open(image) |
|
w, h = image.size |
|
st.text(f"loaded input image of size ({w}, {h})") |
|
width, height = map(lambda x: x - x % 64, (w, h)) |
|
image = image.resize((width, height)) |
|
st.text(f"resized input image to size ({width}, {height} (w, h))") |
|
st.image(image) |
|
|
|
prompt = st.text_input("Prompt") |
|
|
|
seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0) |
|
num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1) |
|
scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1) |
|
steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1) |
|
strength = st.slider("Strength", min_value=0., max_value=1., value=0.9) |
|
|
|
t_progress = st.progress(0) |
|
def t_callback(t): |
|
t_progress.progress(min((t + 1) / t_enc, 1.)) |
|
|
|
assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]' |
|
do_full_sample = strength == 1. |
|
t_enc = min(int(strength * steps), steps-1) |
|
sampler.make_schedule(steps, ddim_eta=0., verbose=True) |
|
if st.button("Sample"): |
|
result = paint( |
|
sampler=sampler, |
|
image=image, |
|
prompt=prompt, |
|
t_enc=t_enc, |
|
seed=seed, |
|
scale=scale, |
|
num_samples=num_samples, |
|
callback=t_callback, |
|
do_full_sample=do_full_sample, |
|
) |
|
st.write("Result") |
|
for image in result: |
|
st.image(image, output_format='PNG') |
|
|
|
|
|
if __name__ == "__main__": |
|
run() |
|
|