scunge-model / scripts /gradio /depth2img.py
raisahil's picture
Upload 134 files
066a946
raw
history blame
7.1 kB
import sys
import torch
import numpy as np
import gradio as gr
from PIL import Image
from omegaconf import OmegaConf
from einops import repeat, rearrange
from pytorch_lightning import seed_everything
from imwatermark import WatermarkEncoder
from scripts.txt2img import put_watermark
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.data.util import AddMiDaS
torch.set_grad_enabled(False)
def initialize_model(config, ckpt):
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
return sampler
def make_batch_sd(
image,
txt,
device,
num_samples=1,
model_type="dpt_hybrid"
):
image = np.array(image.convert("RGB"))
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# sample['jpg'] is tensor hwc in [-1, 1] at this point
midas_trafo = AddMiDaS(model_type=model_type)
batch = {
"jpg": image,
"txt": num_samples * [txt],
}
batch = midas_trafo(batch)
batch["jpg"] = rearrange(batch["jpg"], 'h w c -> 1 c h w')
batch["jpg"] = repeat(batch["jpg"].to(device=device),
"1 ... -> n ...", n=num_samples)
batch["midas_in"] = repeat(torch.from_numpy(batch["midas_in"][None, ...]).to(
device=device), "1 ... -> n ...", n=num_samples)
return batch
def paint(sampler, image, prompt, t_enc, seed, scale, num_samples=1, callback=None,
do_full_sample=False):
device = torch.device(
"cuda") if torch.cuda.is_available() else torch.device("cpu")
model = sampler.model
seed_everything(seed)
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
wm = "SDV2"
wm_encoder = WatermarkEncoder()
wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
with torch.no_grad(),\
torch.autocast("cuda"):
batch = make_batch_sd(
image, txt=prompt, device=device, num_samples=num_samples)
z = model.get_first_stage_encoding(model.encode_first_stage(
batch[model.first_stage_key])) # move to latent space
c = model.cond_stage_model.encode(batch["txt"])
c_cat = list()
for ck in model.concat_keys:
cc = batch[ck]
cc = model.depth_model(cc)
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
keepdim=True)
display_depth = (cc - depth_min) / (depth_max - depth_min)
depth_image = Image.fromarray(
(display_depth[0, 0, ...].cpu().numpy() * 255.).astype(np.uint8))
cc = torch.nn.functional.interpolate(
cc,
size=z.shape[2:],
mode="bicubic",
align_corners=False,
)
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
keepdim=True)
cc = 2. * (cc - depth_min) / (depth_max - depth_min) - 1.
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
# cond
cond = {"c_concat": [c_cat], "c_crossattn": [c]}
# uncond cond
uc_cross = model.get_unconditional_conditioning(num_samples, "")
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
if not do_full_sample:
# encode (scaled latent)
z_enc = sampler.stochastic_encode(
z, torch.tensor([t_enc] * num_samples).to(model.device))
else:
z_enc = torch.randn_like(z)
# decode it
samples = sampler.decode(z_enc, cond, t_enc, unconditional_guidance_scale=scale,
unconditional_conditioning=uc_full, callback=callback)
x_samples_ddim = model.decode_first_stage(samples)
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
return [depth_image] + [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
def pad_image(input_image):
pad_w, pad_h = np.max(((2, 2), np.ceil(
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size
im_padded = Image.fromarray(
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
return im_padded
def predict(input_image, prompt, steps, num_samples, scale, seed, eta, strength):
init_image = input_image.convert("RGB")
image = pad_image(init_image) # resize to integer multiple of 32
sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
do_full_sample = strength == 1.
t_enc = min(int(strength * steps), steps-1)
result = paint(
sampler=sampler,
image=image,
prompt=prompt,
t_enc=t_enc,
seed=seed,
scale=scale,
num_samples=num_samples,
callback=None,
do_full_sample=do_full_sample
)
return result
sampler = initialize_model(sys.argv[1], sys.argv[2])
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Stable Diffusion Depth2Img")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(
label="Images", minimum=1, maximum=4, value=1, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1,
maximum=50, value=50, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1
)
strength = gr.Slider(
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=2147483647,
step=1,
randomize=True,
)
eta = gr.Number(label="eta (DDIM)", value=0.0)
with gr.Column():
gallery = gr.Gallery(label="Generated images", show_label=False).style(
grid=[2], height="auto")
run_button.click(fn=predict, inputs=[
input_image, prompt, ddim_steps, num_samples, scale, seed, eta, strength], outputs=[gallery])
block.launch()