|
import sys |
|
import torch |
|
import numpy as np |
|
import gradio as gr |
|
from PIL import Image |
|
from omegaconf import OmegaConf |
|
from einops import repeat, rearrange |
|
from pytorch_lightning import seed_everything |
|
from imwatermark import WatermarkEncoder |
|
|
|
from scripts.txt2img import put_watermark |
|
from ldm.util import instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.data.util import AddMiDaS |
|
|
|
torch.set_grad_enabled(False) |
|
|
|
|
|
def initialize_model(config, ckpt): |
|
config = OmegaConf.load(config) |
|
model = instantiate_from_config(config.model) |
|
model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False) |
|
|
|
device = torch.device( |
|
"cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = model.to(device) |
|
sampler = DDIMSampler(model) |
|
return sampler |
|
|
|
|
|
def make_batch_sd( |
|
image, |
|
txt, |
|
device, |
|
num_samples=1, |
|
model_type="dpt_hybrid" |
|
): |
|
image = np.array(image.convert("RGB")) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
midas_trafo = AddMiDaS(model_type=model_type) |
|
batch = { |
|
"jpg": image, |
|
"txt": num_samples * [txt], |
|
} |
|
batch = midas_trafo(batch) |
|
batch["jpg"] = rearrange(batch["jpg"], 'h w c -> 1 c h w') |
|
batch["jpg"] = repeat(batch["jpg"].to(device=device), |
|
"1 ... -> n ...", n=num_samples) |
|
batch["midas_in"] = repeat(torch.from_numpy(batch["midas_in"][None, ...]).to( |
|
device=device), "1 ... -> n ...", n=num_samples) |
|
return batch |
|
|
|
|
|
def paint(sampler, image, prompt, t_enc, seed, scale, num_samples=1, callback=None, |
|
do_full_sample=False): |
|
device = torch.device( |
|
"cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
model = sampler.model |
|
seed_everything(seed) |
|
|
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") |
|
wm = "SDV2" |
|
wm_encoder = WatermarkEncoder() |
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) |
|
|
|
with torch.no_grad(),\ |
|
torch.autocast("cuda"): |
|
batch = make_batch_sd( |
|
image, txt=prompt, device=device, num_samples=num_samples) |
|
z = model.get_first_stage_encoding(model.encode_first_stage( |
|
batch[model.first_stage_key])) |
|
c = model.cond_stage_model.encode(batch["txt"]) |
|
c_cat = list() |
|
for ck in model.concat_keys: |
|
cc = batch[ck] |
|
cc = model.depth_model(cc) |
|
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], |
|
keepdim=True) |
|
display_depth = (cc - depth_min) / (depth_max - depth_min) |
|
depth_image = Image.fromarray( |
|
(display_depth[0, 0, ...].cpu().numpy() * 255.).astype(np.uint8)) |
|
cc = torch.nn.functional.interpolate( |
|
cc, |
|
size=z.shape[2:], |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3], |
|
keepdim=True) |
|
cc = 2. * (cc - depth_min) / (depth_max - depth_min) - 1. |
|
c_cat.append(cc) |
|
c_cat = torch.cat(c_cat, dim=1) |
|
|
|
cond = {"c_concat": [c_cat], "c_crossattn": [c]} |
|
|
|
|
|
uc_cross = model.get_unconditional_conditioning(num_samples, "") |
|
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]} |
|
if not do_full_sample: |
|
|
|
z_enc = sampler.stochastic_encode( |
|
z, torch.tensor([t_enc] * num_samples).to(model.device)) |
|
else: |
|
z_enc = torch.randn_like(z) |
|
|
|
samples = sampler.decode(z_enc, cond, t_enc, unconditional_guidance_scale=scale, |
|
unconditional_conditioning=uc_full, callback=callback) |
|
x_samples_ddim = model.decode_first_stage(samples) |
|
result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) |
|
result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255 |
|
return [depth_image] + [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result] |
|
|
|
|
|
def pad_image(input_image): |
|
pad_w, pad_h = np.max(((2, 2), np.ceil( |
|
np.array(input_image.size) / 64).astype(int)), axis=0) * 64 - input_image.size |
|
im_padded = Image.fromarray( |
|
np.pad(np.array(input_image), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge')) |
|
return im_padded |
|
|
|
|
|
def predict(input_image, prompt, steps, num_samples, scale, seed, eta, strength): |
|
init_image = input_image.convert("RGB") |
|
image = pad_image(init_image) |
|
|
|
sampler.make_schedule(steps, ddim_eta=eta, verbose=True) |
|
assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]' |
|
do_full_sample = strength == 1. |
|
t_enc = min(int(strength * steps), steps-1) |
|
result = paint( |
|
sampler=sampler, |
|
image=image, |
|
prompt=prompt, |
|
t_enc=t_enc, |
|
seed=seed, |
|
scale=scale, |
|
num_samples=num_samples, |
|
callback=None, |
|
do_full_sample=do_full_sample |
|
) |
|
return result |
|
|
|
|
|
sampler = initialize_model(sys.argv[1], sys.argv[2]) |
|
|
|
block = gr.Blocks().queue() |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown("## Stable Diffusion Depth2Img") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(source='upload', type="pil") |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button(label="Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
num_samples = gr.Slider( |
|
label="Images", minimum=1, maximum=4, value=1, step=1) |
|
ddim_steps = gr.Slider(label="Steps", minimum=1, |
|
maximum=50, value=50, step=1) |
|
scale = gr.Slider( |
|
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1 |
|
) |
|
strength = gr.Slider( |
|
label="Strength", minimum=0.0, maximum=1.0, value=0.9, step=0.01 |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=2147483647, |
|
step=1, |
|
randomize=True, |
|
) |
|
eta = gr.Number(label="eta (DDIM)", value=0.0) |
|
with gr.Column(): |
|
gallery = gr.Gallery(label="Generated images", show_label=False).style( |
|
grid=[2], height="auto") |
|
|
|
run_button.click(fn=predict, inputs=[ |
|
input_image, prompt, ddim_steps, num_samples, scale, seed, eta, strength], outputs=[gallery]) |
|
|
|
|
|
block.launch() |
|
|