|
import argparse, os |
|
import cv2 |
|
import torch |
|
import numpy as np |
|
from omegaconf import OmegaConf |
|
from PIL import Image |
|
from tqdm import tqdm, trange |
|
from itertools import islice |
|
from einops import rearrange |
|
from torchvision.utils import make_grid |
|
from pytorch_lightning import seed_everything |
|
from torch import autocast |
|
from contextlib import nullcontext |
|
from imwatermark import WatermarkEncoder |
|
|
|
from ldm.util import instantiate_from_config |
|
from ldm.models.diffusion.ddim import DDIMSampler |
|
from ldm.models.diffusion.plms import PLMSSampler |
|
from ldm.models.diffusion.dpm_solver import DPMSolverSampler |
|
|
|
torch.set_grad_enabled(False) |
|
|
|
def chunk(it, size): |
|
it = iter(it) |
|
return iter(lambda: tuple(islice(it, size)), ()) |
|
|
|
|
|
def load_model_from_config(config, ckpt, device=torch.device("cuda"), verbose=False): |
|
print(f"Loading model from {ckpt}") |
|
pl_sd = torch.load(ckpt, map_location="cpu") |
|
if "global_step" in pl_sd: |
|
print(f"Global Step: {pl_sd['global_step']}") |
|
sd = pl_sd["state_dict"] |
|
model = instantiate_from_config(config.model) |
|
m, u = model.load_state_dict(sd, strict=False) |
|
if len(m) > 0 and verbose: |
|
print("missing keys:") |
|
print(m) |
|
if len(u) > 0 and verbose: |
|
print("unexpected keys:") |
|
print(u) |
|
|
|
if device == torch.device("cuda"): |
|
model.cuda() |
|
elif device == torch.device("cpu"): |
|
model.cpu() |
|
model.cond_stage_model.device = "cpu" |
|
else: |
|
raise ValueError(f"Incorrect device name. Received: {device}") |
|
model.eval() |
|
return model |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--prompt", |
|
type=str, |
|
nargs="?", |
|
default="a professional photograph of an astronaut riding a triceratops", |
|
help="the prompt to render" |
|
) |
|
parser.add_argument( |
|
"--outdir", |
|
type=str, |
|
nargs="?", |
|
help="dir to write results to", |
|
default="outputs/txt2img-samples" |
|
) |
|
parser.add_argument( |
|
"--steps", |
|
type=int, |
|
default=50, |
|
help="number of ddim sampling steps", |
|
) |
|
parser.add_argument( |
|
"--plms", |
|
action='store_true', |
|
help="use plms sampling", |
|
) |
|
parser.add_argument( |
|
"--dpm", |
|
action='store_true', |
|
help="use DPM (2) sampler", |
|
) |
|
parser.add_argument( |
|
"--fixed_code", |
|
action='store_true', |
|
help="if enabled, uses the same starting code across all samples ", |
|
) |
|
parser.add_argument( |
|
"--ddim_eta", |
|
type=float, |
|
default=0.0, |
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling", |
|
) |
|
parser.add_argument( |
|
"--n_iter", |
|
type=int, |
|
default=3, |
|
help="sample this often", |
|
) |
|
parser.add_argument( |
|
"--H", |
|
type=int, |
|
default=512, |
|
help="image height, in pixel space", |
|
) |
|
parser.add_argument( |
|
"--W", |
|
type=int, |
|
default=512, |
|
help="image width, in pixel space", |
|
) |
|
parser.add_argument( |
|
"--C", |
|
type=int, |
|
default=4, |
|
help="latent channels", |
|
) |
|
parser.add_argument( |
|
"--f", |
|
type=int, |
|
default=8, |
|
help="downsampling factor, most often 8 or 16", |
|
) |
|
parser.add_argument( |
|
"--n_samples", |
|
type=int, |
|
default=3, |
|
help="how many samples to produce for each given prompt. A.k.a batch size", |
|
) |
|
parser.add_argument( |
|
"--n_rows", |
|
type=int, |
|
default=0, |
|
help="rows in the grid (default: n_samples)", |
|
) |
|
parser.add_argument( |
|
"--scale", |
|
type=float, |
|
default=9.0, |
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", |
|
) |
|
parser.add_argument( |
|
"--from-file", |
|
type=str, |
|
help="if specified, load prompts from this file, separated by newlines", |
|
) |
|
parser.add_argument( |
|
"--config", |
|
type=str, |
|
default="configs/stable-diffusion/v2-inference.yaml", |
|
help="path to config which constructs model", |
|
) |
|
parser.add_argument( |
|
"--ckpt", |
|
type=str, |
|
help="path to checkpoint of model", |
|
) |
|
parser.add_argument( |
|
"--seed", |
|
type=int, |
|
default=42, |
|
help="the seed (for reproducible sampling)", |
|
) |
|
parser.add_argument( |
|
"--precision", |
|
type=str, |
|
help="evaluate at this precision", |
|
choices=["full", "autocast"], |
|
default="autocast" |
|
) |
|
parser.add_argument( |
|
"--repeat", |
|
type=int, |
|
default=1, |
|
help="repeat each prompt in file this often", |
|
) |
|
parser.add_argument( |
|
"--device", |
|
type=str, |
|
help="Device on which Stable Diffusion will be run", |
|
choices=["cpu", "cuda"], |
|
default="cpu" |
|
) |
|
parser.add_argument( |
|
"--torchscript", |
|
action='store_true', |
|
help="Use TorchScript", |
|
) |
|
parser.add_argument( |
|
"--ipex", |
|
action='store_true', |
|
help="Use Intel® Extension for PyTorch*", |
|
) |
|
parser.add_argument( |
|
"--bf16", |
|
action='store_true', |
|
help="Use bfloat16", |
|
) |
|
opt = parser.parse_args() |
|
return opt |
|
|
|
|
|
def put_watermark(img, wm_encoder=None): |
|
if wm_encoder is not None: |
|
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) |
|
img = wm_encoder.encode(img, 'dwtDct') |
|
img = Image.fromarray(img[:, :, ::-1]) |
|
return img |
|
|
|
|
|
def main(opt): |
|
seed_everything(opt.seed) |
|
|
|
config = OmegaConf.load(f"{opt.config}") |
|
device = torch.device("cuda") if opt.device == "cuda" else torch.device("cpu") |
|
model = load_model_from_config(config, f"{opt.ckpt}", device) |
|
|
|
if opt.plms: |
|
sampler = PLMSSampler(model, device=device) |
|
elif opt.dpm: |
|
sampler = DPMSolverSampler(model, device=device) |
|
else: |
|
sampler = DDIMSampler(model, device=device) |
|
|
|
os.makedirs(opt.outdir, exist_ok=True) |
|
outpath = opt.outdir |
|
|
|
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") |
|
wm = "SDV2" |
|
wm_encoder = WatermarkEncoder() |
|
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) |
|
|
|
batch_size = opt.n_samples |
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size |
|
if not opt.from_file: |
|
prompt = opt.prompt |
|
assert prompt is not None |
|
data = [batch_size * [prompt]] |
|
|
|
else: |
|
print(f"reading prompts from {opt.from_file}") |
|
with open(opt.from_file, "r") as f: |
|
data = f.read().splitlines() |
|
data = [p for p in data for i in range(opt.repeat)] |
|
data = list(chunk(data, batch_size)) |
|
|
|
sample_path = os.path.join(outpath, "samples") |
|
os.makedirs(sample_path, exist_ok=True) |
|
sample_count = 0 |
|
base_count = len(os.listdir(sample_path)) |
|
grid_count = len(os.listdir(outpath)) - 1 |
|
|
|
start_code = None |
|
if opt.fixed_code: |
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) |
|
|
|
if opt.torchscript or opt.ipex: |
|
transformer = model.cond_stage_model.model |
|
unet = model.model.diffusion_model |
|
decoder = model.first_stage_model.decoder |
|
additional_context = torch.cpu.amp.autocast() if opt.bf16 else nullcontext() |
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] |
|
|
|
if opt.bf16 and not opt.torchscript and not opt.ipex: |
|
raise ValueError('Bfloat16 is supported only for torchscript+ipex') |
|
if opt.bf16 and unet.dtype != torch.bfloat16: |
|
raise ValueError("Use configs/stable-diffusion/intel/ configs with bf16 enabled if " + |
|
"you'd like to use bfloat16 with CPU.") |
|
if unet.dtype == torch.float16 and device == torch.device("cpu"): |
|
raise ValueError("Use configs/stable-diffusion/intel/ configs for your model if you'd like to run it on CPU.") |
|
|
|
if opt.ipex: |
|
import intel_extension_for_pytorch as ipex |
|
bf16_dtype = torch.bfloat16 if opt.bf16 else None |
|
transformer = transformer.to(memory_format=torch.channels_last) |
|
transformer = ipex.optimize(transformer, level="O1", inplace=True) |
|
|
|
unet = unet.to(memory_format=torch.channels_last) |
|
unet = ipex.optimize(unet, level="O1", auto_kernel_selection=True, inplace=True, dtype=bf16_dtype) |
|
|
|
decoder = decoder.to(memory_format=torch.channels_last) |
|
decoder = ipex.optimize(decoder, level="O1", auto_kernel_selection=True, inplace=True, dtype=bf16_dtype) |
|
|
|
if opt.torchscript: |
|
with torch.no_grad(), additional_context: |
|
|
|
if unet.use_checkpoint: |
|
raise ValueError("Gradient checkpoint won't work with tracing. " + |
|
"Use configs/stable-diffusion/intel/ configs for your model or disable checkpoint in your config.") |
|
|
|
img_in = torch.ones(2, 4, 96, 96, dtype=torch.float32) |
|
t_in = torch.ones(2, dtype=torch.int64) |
|
context = torch.ones(2, 77, 1024, dtype=torch.float32) |
|
scripted_unet = torch.jit.trace(unet, (img_in, t_in, context)) |
|
scripted_unet = torch.jit.optimize_for_inference(scripted_unet) |
|
print(type(scripted_unet)) |
|
model.model.scripted_diffusion_model = scripted_unet |
|
|
|
|
|
samples_ddim = torch.ones(1, 4, 96, 96, dtype=torch.float32) |
|
scripted_decoder = torch.jit.trace(decoder, (samples_ddim)) |
|
scripted_decoder = torch.jit.optimize_for_inference(scripted_decoder) |
|
print(type(scripted_decoder)) |
|
model.first_stage_model.decoder = scripted_decoder |
|
|
|
prompts = data[0] |
|
print("Running a forward pass to initialize optimizations") |
|
uc = None |
|
if opt.scale != 1.0: |
|
uc = model.get_learned_conditioning(batch_size * [""]) |
|
if isinstance(prompts, tuple): |
|
prompts = list(prompts) |
|
|
|
with torch.no_grad(), additional_context: |
|
for _ in range(3): |
|
c = model.get_learned_conditioning(prompts) |
|
samples_ddim, _ = sampler.sample(S=5, |
|
conditioning=c, |
|
batch_size=batch_size, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=opt.scale, |
|
unconditional_conditioning=uc, |
|
eta=opt.ddim_eta, |
|
x_T=start_code) |
|
print("Running a forward pass for decoder") |
|
for _ in range(3): |
|
x_samples_ddim = model.decode_first_stage(samples_ddim) |
|
|
|
precision_scope = autocast if opt.precision=="autocast" or opt.bf16 else nullcontext |
|
with torch.no_grad(), \ |
|
precision_scope(opt.device), \ |
|
model.ema_scope(): |
|
all_samples = list() |
|
for n in trange(opt.n_iter, desc="Sampling"): |
|
for prompts in tqdm(data, desc="data"): |
|
uc = None |
|
if opt.scale != 1.0: |
|
uc = model.get_learned_conditioning(batch_size * [""]) |
|
if isinstance(prompts, tuple): |
|
prompts = list(prompts) |
|
c = model.get_learned_conditioning(prompts) |
|
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] |
|
samples, _ = sampler.sample(S=opt.steps, |
|
conditioning=c, |
|
batch_size=opt.n_samples, |
|
shape=shape, |
|
verbose=False, |
|
unconditional_guidance_scale=opt.scale, |
|
unconditional_conditioning=uc, |
|
eta=opt.ddim_eta, |
|
x_T=start_code) |
|
|
|
x_samples = model.decode_first_stage(samples) |
|
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0) |
|
|
|
for x_sample in x_samples: |
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') |
|
img = Image.fromarray(x_sample.astype(np.uint8)) |
|
img = put_watermark(img, wm_encoder) |
|
img.save(os.path.join(sample_path, f"{base_count:05}.png")) |
|
base_count += 1 |
|
sample_count += 1 |
|
|
|
all_samples.append(x_samples) |
|
|
|
|
|
grid = torch.stack(all_samples, 0) |
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w') |
|
grid = make_grid(grid, nrow=n_rows) |
|
|
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() |
|
grid = Image.fromarray(grid.astype(np.uint8)) |
|
grid = put_watermark(grid, wm_encoder) |
|
grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) |
|
grid_count += 1 |
|
|
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" |
|
f" \nEnjoy.") |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_args() |
|
main(opt) |
|
|