--- license: other license_name: stabilityai-ai-community license_link: LICENSE.md base_model: - stabilityai/stable-diffusion-3-medium pipeline_tag: text-to-video tags: - image-to-video --- # ⚡️Pyramid Flow⚡️ [[Paper]](https://arxiv.org/abs/2410.05954) [[Project Page ✨]](https://pyramid-flow.github.io) [[Code 🚀]](https://github.com/jy0205/Pyramid-Flow) This is the official repository for Pyramid Flow, a training-efficient **Autoregressive Video Generation** method based on **Flow Matching**. By training only on open-source datasets, it generates high-quality 10-second videos at 768p resolution and 24 FPS, and naturally supports image-to-video generation.
10s, 768p, 24fps 5s, 768p, 24fps Image-to-video
## News * `COMING SOON` ⚡️⚡️⚡️ Training code and new model checkpoints trained from scratch. * `2024.10.10` 🚀🚀🚀 We release the [technical report](https://arxiv.org/abs/2410.05954), [project page](https://pyramid-flow.github.io) and [model checkpoint](https://huggingface.co/rain1011/pyramid-flow-sd3) of Pyramid Flow. ## Usage You can directly download the model from [Huggingface](https://huggingface.co/rain1011/pyramid-flow-sd3). We provide both model checkpoints for 768p and 384p video generation. The 384p checkpoint supports 5-second video generation at 24FPS, while the 768p checkpoint supports up to 10-second video generation at 24FPS. ```python from huggingface_hub import snapshot_download model_path = 'PATH' # The local directory to save downloaded checkpoint snapshot_download("rain1011/pyramid-flow-sd3", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model') ``` To use our model, please follow the inference code in `video_generation_demo.ipynb` at [this link](https://github.com/jy0205/Pyramid-Flow/blob/main/video_generation_demo.ipynb). We further simplify it into the following two-step procedure. First, load the downloaded model: ```python import torch from PIL import Image from pyramid_dit import PyramidDiTForVideoGeneration from diffusers.utils import load_image, export_to_video torch.cuda.set_device(0) model_dtype, torch_dtype = 'bf16', torch.bfloat16 # Use bf16, fp16 or fp32 model = PyramidDiTForVideoGeneration( 'PATH', # The downloaded checkpoint dir model_dtype, model_variant='diffusion_transformer_768p', # 'diffusion_transformer_384p' ) model.vae.to("cuda") model.dit.to("cuda") model.text_encoder.to("cuda") model.vae.enable_tiling() ``` Then, you can try text-to-video generation on your own prompts: ```python prompt = "A movie trailer featuring the adventures of the 30 year old space man wearing a red wool knitted motorcycle helmet, blue sky, salt desert, cinematic style, shot on 35mm film, vivid colors" with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): frames = model.generate( prompt=prompt, num_inference_steps=[20, 20, 20], video_num_inference_steps=[10, 10, 10], height=768, width=1280, temp=16, # temp=16: 5s, temp=31: 10s guidance_scale=9.0, # The guidance for the first frame video_guidance_scale=5.0, # The guidance for the other video latent output_type="pil", ) export_to_video(frames, "./text_to_video_sample.mp4", fps=24) ``` As an autoregressive model, our model also supports (text conditioned) image-to-video generation: ```python image = Image.open('assets/the_great_wall.jpg').convert("RGB").resize((1280, 768)) prompt = "FPV flying over the Great Wall" with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): frames = model.generate_i2v( prompt=prompt, input_image=image, num_inference_steps=[10, 10, 10], temp=16, video_guidance_scale=4.0, output_type="pil", ) export_to_video(frames, "./image_to_video_sample.mp4", fps=24) ``` Usage tips: * The `guidance_scale` parameter controls the visual quality. We suggest using a guidance within [7, 9] for the 768p checkpoint during text-to-video generation, and 7 for the 384p checkpoint. * The `video_guidance_scale` parameter controls the motion. A larger value increases the dynamic degree and mitigates the autoregressive generation degradation, while a smaller value stabilizes the video. * For 10-second video generation, we recommend using a guidance scale of 7 and a video guidance scale of 5. ## Gallery The following video examples are generated at 5s, 768p, 24fps. For more results, please visit our [project page](https://pyramid-flow.github.io).
## Acknowledgement We are grateful for the following awesome projects when implementing Pyramid Flow: * [SD3 Medium](https://huggingface.co/stabilityai/stable-diffusion-3-medium) and [Flux 1.0](https://huggingface.co/black-forest-labs/FLUX.1-dev): State-of-the-art image generation models based on flow matching. * [Diffusion Forcing](https://boyuan.space/diffusion-forcing) and [GameNGen](https://gamengen.github.io): Next-token prediction meets full-sequence diffusion. * [WebVid-10M](https://github.com/m-bain/webvid), [OpenVid-1M](https://github.com/NJU-PCALab/OpenVid-1M) and [Open-Sora Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan): Large-scale datasets for text-to-video generation. * [CogVideoX](https://github.com/THUDM/CogVideo): An open-source text-to-video generation model that shares many training details. * [Video-LLaMA2](https://github.com/DAMO-NLP-SG/VideoLLaMA2): An open-source video LLM for our video recaptioning. ## Citation Consider giving this repository a star and cite Pyramid Flow in your publications if it helps your research. ``` @article{jin2024pyramidal, title={Pyramidal Flow Matching for Efficient Video Generative Modeling}, author={Jin, Yang and Sun, Zhicheng and Li, Ningyuan and Xu, Kun and Xu, Kun and Jiang, Hao and Zhuang, Nan and Huang, Quzhe and Song, Yang and Mu, Yadong and Lin, Zhouchen}, jounal={arXiv preprint arXiv:2410.05954}, year={2024} } ```