--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: deit-base-mri results: - task: name: Image Classification type: image-classification dataset: name: mriDataSet type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9900709219858156 --- # deit-base-mri This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the mriDataSet dataset. It achieves the following results on the evaluation set: - Loss: 0.0657 - Accuracy: 0.9901 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0107 | 0.8 | 500 | 0.0782 | 0.9887 | | 0.0065 | 1.6 | 1000 | 0.0657 | 0.9901 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1