--- tags: autotrain language: en widget: - text: "I love AutoTrain 🤗" datasets: - rabiaqayyum/autotrain-data-mental-health-analysis co2_eq_emissions: 313.3534743349287 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 752423172 - CO2 Emissions (in grams): 313.3534743349287 ## Validation Metrics - Loss: 0.6064515113830566 - Accuracy: 0.805171240644137 - Macro F1: 0.7253473044054398 - Micro F1: 0.805171240644137 - Weighted F1: 0.7970679970423672 - Macro Precision: 0.7477679873153633 - Micro Precision: 0.805171240644137 - Weighted Precision: 0.7966263131173029 - Macro Recall: 0.7143231260991618 - Micro Recall: 0.805171240644137 - Weighted Recall: 0.805171240644137 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Frabiaqayyum%2Fautotrain-mental-health-analysis-752423172 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("rabiaqayyum/autotrain-mental-health-analysis-752423172", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("rabiaqayyum/autotrain-mental-health-analysis-752423172", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```