File size: 11,553 Bytes
24b0eb4 84b2f78 24b0eb4 0bde7fc 24b0eb4 0bde7fc 24b0eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
---
library_name: pytorch
license: bsd-3-clause
pipeline_tag: object-detection
tags:
- real_time
- quantized
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/foot_track_net_quantized/web-assets/model_demo.png)
# Person-Foot-Detection-Quantized: Optimized for Mobile Deployment
## Multi-task Human detector
Real-time multiple person detection with accurate feet localization optimized for mobile and edge.
This model is an implementation of Person-Foot-Detection-Quantized found [here](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/foot_track_net_quantized/model.py).
This repository provides scripts to run Person-Foot-Detection-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/foot_track_net_quantized).
### Model Details
- **Model Type:** Object detection
- **Model Stats:**
- Model checkpoint: SA-e30_finetune50.pth
- Inference latency: RealTime
- Input resolution: 640x480
- Number of output classes: 2
- Number of parameters: 2.53M
- Model size: 9.69 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Person-Foot-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.144 ms | 0 - 5 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.288 ms | 0 - 5 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.so](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.so) |
| Person-Foot-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.661 ms | 0 - 4 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.onnx) |
| Person-Foot-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.797 ms | 0 - 29 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.867 ms | 1 - 24 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.so](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.so) |
| Person-Foot-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.167 ms | 0 - 58 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.onnx) |
| Person-Foot-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.774 ms | 0 - 21 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.84 ms | 0 - 22 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.126 ms | 0 - 40 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.onnx) |
| Person-Foot-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 5.661 ms | 1 - 30 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 6.809 ms | 1 - 7 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 26.3 ms | 1 - 11 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.145 ms | 0 - 6 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.2 ms | 1 - 2 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 19.55 ms | 1 - 26 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 19.789 ms | 1 - 11 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.149 ms | 0 - 101 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.247 ms | 1 - 3 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 2.25 ms | 0 - 20 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 2.32 ms | 1 - 7 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.155 ms | 0 - 70 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.237 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 1.884 ms | 0 - 25 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 2.075 ms | 1 - 7 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.418 ms | 0 - 26 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.tflite) |
| Person-Foot-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.553 ms | 1 - 28 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.452 ms | 1 - 1 MB | INT8 | NPU | Use Export Script |
| Person-Foot-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.776 ms | 8 - 8 MB | INT8 | NPU | [Person-Foot-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Person-Foot-Detection-Quantized/blob/main/Person-Foot-Detection-Quantized.onnx) |
## Installation
This model can be installed as a Python package via pip.
```bash
pip install "qai-hub-models[foot_track_net_quantized]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.foot_track_net_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.foot_track_net_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.foot_track_net_quantized.export
```
```
Profiling Results
------------------------------------------------------------
Person-Foot-Detection-Quantized
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 1.1
Estimated peak memory usage (MB): [0, 5]
Total # Ops : 146
Compute Unit(s) : NPU (146 ops)
```
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.foot_track_net_quantized.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.foot_track_net_quantized.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Person-Foot-Detection-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/foot_track_net_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Person-Foot-Detection-Quantized can be found [here](https://github.com/qcom-ai-hub/ai-hub-models-internal/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [None](None)
* [Source Model Implementation](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/foot_track_net_quantized/model.py)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|