File size: 11,643 Bytes
15375b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410635
 
 
 
 
 
9991157
1410635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15375b5
 
 
 
 
 
 
1410635
15375b5
1410635
15375b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0224af
15375b5
1410635
e0224af
 
15375b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410635
 
15375b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
library_name: pytorch
license: bsd-3-clause
pipeline_tag: keypoint-detection
tags:
- quantized
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/facemap_3dmm_quantized/web-assets/model_demo.png)

# Facial-Landmark-Detection-Quantized: Optimized for Mobile Deployment
## Facial landmark predictor with 3DMM


Real-time 3D facial landmark detection optimized for mobile and edge.

This model is an implementation of Facial-Landmark-Detection-Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).


This repository provides scripts to run Facial-Landmark-Detection-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/facemap_3dmm_quantized).


### Model Details

- **Model Type:** Pose estimation
- **Model Stats:**
  - Input resolution: 128x128
  - Number of parameters: 5.424M
  - Model size: 5.314MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.174 ms | 0 - 17 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.223 ms | 0 - 16 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.so](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.so) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.367 ms | 0 - 4 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.onnx) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.14 ms | 0 - 23 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.179 ms | 0 - 22 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.so](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.so) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.28 ms | 0 - 23 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.onnx) |
| Facial-Landmark-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.128 ms | 0 - 16 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.155 ms | 0 - 16 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.295 ms | 0 - 18 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.onnx) |
| Facial-Landmark-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 0.56 ms | 0 - 15 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 0.731 ms | 0 - 11 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 2.024 ms | 0 - 3 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.171 ms | 0 - 17 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.22 ms | 0 - 4 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 1.116 ms | 0 - 9 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 1.367 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.171 ms | 0 - 16 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.213 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 0.455 ms | 0 - 15 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 0.802 ms | 0 - 14 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.177 ms | 0 - 17 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.221 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 0.395 ms | 0 - 10 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 0.55 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.221 ms | 0 - 22 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.275 ms | 0 - 20 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.282 ms | 1 - 1 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.325 ms | 6 - 6 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[facemap-3dmm-quantized]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.facemap_3dmm_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.facemap_3dmm_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.facemap_3dmm_quantized.export
```
```
Profiling Results
------------------------------------------------------------
Facial-Landmark-Detection-Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.2                    
Estimated peak memory usage (MB): [0, 17]                
Total # Ops                     : 43                     
Compute Unit(s)                 : NPU (43 ops)           
```




## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.facemap_3dmm_quantized.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.facemap_3dmm_quantized.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on Facial-Landmark-Detection-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/facemap_3dmm_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of Facial-Landmark-Detection-Quantized can be found
  [here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [None](None)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).