File size: 11,643 Bytes
15375b5 1410635 9991157 1410635 15375b5 1410635 15375b5 1410635 15375b5 e0224af 15375b5 1410635 e0224af 15375b5 1410635 15375b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
---
library_name: pytorch
license: bsd-3-clause
pipeline_tag: keypoint-detection
tags:
- quantized
- android
---
![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/facemap_3dmm_quantized/web-assets/model_demo.png)
# Facial-Landmark-Detection-Quantized: Optimized for Mobile Deployment
## Facial landmark predictor with 3DMM
Real-time 3D facial landmark detection optimized for mobile and edge.
This model is an implementation of Facial-Landmark-Detection-Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py).
This repository provides scripts to run Facial-Landmark-Detection-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/facemap_3dmm_quantized).
### Model Details
- **Model Type:** Pose estimation
- **Model Stats:**
- Input resolution: 128x128
- Number of parameters: 5.424M
- Model size: 5.314MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.174 ms | 0 - 17 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.223 ms | 0 - 16 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.so](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.so) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.367 ms | 0 - 4 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.onnx) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.14 ms | 0 - 23 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.179 ms | 0 - 22 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.so](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.so) |
| Facial-Landmark-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.28 ms | 0 - 23 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.onnx) |
| Facial-Landmark-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.128 ms | 0 - 16 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.155 ms | 0 - 16 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.295 ms | 0 - 18 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.onnx) |
| Facial-Landmark-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 0.56 ms | 0 - 15 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 0.731 ms | 0 - 11 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 2.024 ms | 0 - 3 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.171 ms | 0 - 17 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.22 ms | 0 - 4 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 1.116 ms | 0 - 9 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 1.367 ms | 0 - 8 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.171 ms | 0 - 16 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.213 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 0.455 ms | 0 - 15 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 0.802 ms | 0 - 14 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.177 ms | 0 - 17 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.221 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 0.395 ms | 0 - 10 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 0.55 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.221 ms | 0 - 22 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.tflite) |
| Facial-Landmark-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.275 ms | 0 - 20 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.282 ms | 1 - 1 MB | INT8 | NPU | Use Export Script |
| Facial-Landmark-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.325 ms | 6 - 6 MB | INT8 | NPU | [Facial-Landmark-Detection-Quantized.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection-Quantized/blob/main/Facial-Landmark-Detection-Quantized.onnx) |
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[facemap-3dmm-quantized]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.facemap_3dmm_quantized.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.facemap_3dmm_quantized.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.facemap_3dmm_quantized.export
```
```
Profiling Results
------------------------------------------------------------
Facial-Landmark-Detection-Quantized
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 0.2
Estimated peak memory usage (MB): [0, 17]
Total # Ops : 43
Compute Unit(s) : NPU (43 ops)
```
## Run demo on a cloud-hosted device
You can also run the demo on-device.
```bash
python -m qai_hub_models.models.facemap_3dmm_quantized.demo --on-device
```
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.facemap_3dmm_quantized.demo -- --on-device
```
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on Facial-Landmark-Detection-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/facemap_3dmm_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of Facial-Landmark-Detection-Quantized can be found
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [None](None)
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|