Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -36,35 +36,34 @@ More details on model performance across various devices, can be found
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
-
| EfficientViT-l2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 22.
|
40 |
-
| EfficientViT-l2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 21.
|
41 |
-
| EfficientViT-l2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 15.
|
42 |
-
| EfficientViT-l2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 15.
|
43 |
-
| EfficientViT-l2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 15.
|
44 |
-
| EfficientViT-l2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 10.
|
45 |
-
| EfficientViT-l2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 17.
|
46 |
-
| EfficientViT-l2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN |
|
47 |
-
| EfficientViT-l2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX |
|
48 |
-
| EfficientViT-l2-cls | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 22.
|
49 |
-
| EfficientViT-l2-cls | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 15.
|
50 |
-
| EfficientViT-l2-cls | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 20.
|
51 |
-
| EfficientViT-l2-cls | QCS8450 (Proxy) | QCS8450 Proxy | QNN |
|
52 |
-
| EfficientViT-l2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 16.
|
53 |
-
| EfficientViT-l2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 17.
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
## Installation
|
59 |
|
60 |
-
This model can be installed as a Python package via pip.
|
61 |
|
|
|
62 |
```bash
|
63 |
-
pip install "qai-hub-models[
|
64 |
```
|
65 |
|
66 |
|
67 |
-
|
68 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
69 |
|
70 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
@@ -115,7 +114,7 @@ Profiling Results
|
|
115 |
EfficientViT-l2-cls
|
116 |
Device : Samsung Galaxy S23 (13)
|
117 |
Runtime : TFLITE
|
118 |
-
Estimated inference time (ms) : 22.
|
119 |
Estimated peak memory usage (MB): [0, 27]
|
120 |
Total # Ops : 675
|
121 |
Compute Unit(s) : NPU (675 ops)
|
@@ -143,7 +142,7 @@ from qai_hub_models.models.efficientvit_l2_cls import Model
|
|
143 |
torch_model = Model.from_pretrained()
|
144 |
|
145 |
# Device
|
146 |
-
device = hub.Device("Samsung Galaxy
|
147 |
|
148 |
# Trace model
|
149 |
input_shape = torch_model.get_input_spec()
|
@@ -235,7 +234,8 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
235 |
|
236 |
|
237 |
## License
|
238 |
-
* The license for the original implementation of EfficientViT-l2-cls can be found
|
|
|
239 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
240 |
|
241 |
|
|
|
36 |
|
37 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
|---|---|---|---|---|---|---|---|---|
|
39 |
+
| EfficientViT-l2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 22.091 ms | 0 - 27 MB | FP16 | NPU | [EfficientViT-l2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.tflite) |
|
40 |
+
| EfficientViT-l2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 21.879 ms | 0 - 27 MB | FP16 | NPU | [EfficientViT-l2-cls.so](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.so) |
|
41 |
+
| EfficientViT-l2-cls | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 15.934 ms | 0 - 291 MB | FP16 | NPU | [EfficientViT-l2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.onnx) |
|
42 |
+
| EfficientViT-l2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 15.864 ms | 0 - 89 MB | FP16 | NPU | [EfficientViT-l2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.tflite) |
|
43 |
+
| EfficientViT-l2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 15.585 ms | 1 - 87 MB | FP16 | NPU | [EfficientViT-l2-cls.so](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.so) |
|
44 |
+
| EfficientViT-l2-cls | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 10.995 ms | 1 - 104 MB | FP16 | NPU | [EfficientViT-l2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.onnx) |
|
45 |
+
| EfficientViT-l2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 17.034 ms | 0 - 91 MB | FP16 | NPU | [EfficientViT-l2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.tflite) |
|
46 |
+
| EfficientViT-l2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 13.817 ms | 1 - 91 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| EfficientViT-l2-cls | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 9.708 ms | 0 - 99 MB | FP16 | NPU | [EfficientViT-l2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.onnx) |
|
48 |
+
| EfficientViT-l2-cls | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 22.166 ms | 0 - 28 MB | FP16 | NPU | [EfficientViT-l2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.tflite) |
|
49 |
+
| EfficientViT-l2-cls | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 15.234 ms | 1 - 4 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| EfficientViT-l2-cls | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 20.003 ms | 0 - 62 MB | FP16 | NPU | [EfficientViT-l2-cls.tflite](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.tflite) |
|
51 |
+
| EfficientViT-l2-cls | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 19.856 ms | 0 - 68 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| EfficientViT-l2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 16.127 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| EfficientViT-l2-cls | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 17.206 ms | 131 - 131 MB | FP16 | NPU | [EfficientViT-l2-cls.onnx](https://huggingface.co/qualcomm/EfficientViT-l2-cls/blob/main/EfficientViT-l2-cls.onnx) |
|
54 |
|
55 |
|
56 |
|
57 |
|
58 |
## Installation
|
59 |
|
|
|
60 |
|
61 |
+
Install the package via pip:
|
62 |
```bash
|
63 |
+
pip install "qai-hub-models[efficientvit-l2-cls]"
|
64 |
```
|
65 |
|
66 |
|
|
|
67 |
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
68 |
|
69 |
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
|
|
114 |
EfficientViT-l2-cls
|
115 |
Device : Samsung Galaxy S23 (13)
|
116 |
Runtime : TFLITE
|
117 |
+
Estimated inference time (ms) : 22.1
|
118 |
Estimated peak memory usage (MB): [0, 27]
|
119 |
Total # Ops : 675
|
120 |
Compute Unit(s) : NPU (675 ops)
|
|
|
142 |
torch_model = Model.from_pretrained()
|
143 |
|
144 |
# Device
|
145 |
+
device = hub.Device("Samsung Galaxy S24")
|
146 |
|
147 |
# Trace model
|
148 |
input_shape = torch_model.get_input_spec()
|
|
|
234 |
|
235 |
|
236 |
## License
|
237 |
+
* The license for the original implementation of EfficientViT-l2-cls can be found
|
238 |
+
[here](https://github.com/CVHub520/efficientvit/blob/main/LICENSE).
|
239 |
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
240 |
|
241 |
|