--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: openai/whisper-small datasets: - facebook/voxpopuli metrics: - wer model-index: - name: WhisperForSpokenNER-end2end results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: facebook/voxpopuli de+es+fr+nl type: facebook/voxpopuli split: None metrics: - type: wer value: 0.1421388512860182 name: Wer --- # WhisperForSpokenNER-end2end This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the facebook/voxpopuli de+es+fr+nl dataset. It achieves the following results on the evaluation set: - Loss: 0.3440 - Combined Wer: 0.2231 - F1 Score: 0.5368 - Label F1: 0.6908 - Wer: 0.1421 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Combined Wer | F1 Score | Label F1 | Wer | |:-------------:|:-----:|:----:|:---------------:|:------------:|:--------:|:--------:|:------:| | 1.1583 | 0.1 | 500 | 1.0361 | 0.3217 | 0.0746 | 0.1415 | 0.2067 | | 0.4069 | 0.2 | 1000 | 0.4111 | 0.2203 | 0.4223 | 0.5940 | 0.1235 | | 0.3708 | 0.3 | 1500 | 0.3768 | 0.2201 | 0.4609 | 0.6267 | 0.1295 | | 0.3512 | 0.4 | 2000 | 0.3624 | 0.2223 | 0.5142 | 0.6835 | 0.1359 | | 0.3411 | 0.5 | 2500 | 0.3543 | 0.2204 | 0.5225 | 0.6883 | 0.1374 | | 0.3313 | 1.02 | 3000 | 0.3492 | 0.2235 | 0.5193 | 0.6808 | 0.1398 | | 0.3252 | 1.12 | 3500 | 0.3459 | 0.2251 | 0.5333 | 0.6893 | 0.1436 | | 0.3293 | 1.22 | 4000 | 0.3447 | 0.2237 | 0.5325 | 0.6860 | 0.1416 | | 0.321 | 1.32 | 4500 | 0.3443 | 0.2238 | 0.5366 | 0.6905 | 0.1425 | | 0.3223 | 1.42 | 5000 | 0.3440 | 0.2231 | 0.5368 | 0.6908 | 0.1421 | ### Framework versions - PEFT 0.7.1.dev0 - Transformers 4.37.0.dev0 - Pytorch 2.1.0 - Datasets 2.14.6 - Tokenizers 0.14.1