Quentin Gallouédec commited on
Commit
fb1ec22
·
1 Parent(s): 37959a3

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - FishSwimDMC-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DDPG
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: FishSwimDMC-v0
16
+ type: FishSwimDMC-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 67.18 +/- 28.19
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DDPG** Agent playing **FishSwimDMC-v0**
25
+ This is a trained model of a **DDPG** agent playing **FishSwimDMC-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ddpg --env FishSwimDMC-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo ddpg --env FishSwimDMC-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ddpg --env FishSwimDMC-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo ddpg --env FishSwimDMC-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ddpg --env FishSwimDMC-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ddpg --env FishSwimDMC-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 64),
66
+ ('gamma', 0.99),
67
+ ('learning_rate', 0.0001),
68
+ ('n_timesteps', 1000000.0),
69
+ ('noise_std', 0.3),
70
+ ('noise_type', 'ornstein-uhlenbeck'),
71
+ ('policy', 'MlpPolicy'),
72
+ ('policy_kwargs',
73
+ 'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
74
+ ('normalize', False)])
75
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ddpg
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - FishSwimDMC-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1921464222
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/FishSwimDMC-v0__ddpg__1921464222__1673811018
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - qgallouedec
78
+ - - wandb_project_name
79
+ - dmc
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 64
4
+ - - gamma
5
+ - 0.99
6
+ - - learning_rate
7
+ - 0.0001
8
+ - - n_timesteps
9
+ - 1000000.0
10
+ - - noise_std
11
+ - 0.3
12
+ - - noise_type
13
+ - ornstein-uhlenbeck
14
+ - - policy
15
+ - MlpPolicy
16
+ - - policy_kwargs
17
+ - dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
ddpg-FishSwimDMC-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f9edf92a9d5cfc6612146f95822bcc4fe9ca971c7a16cf7756fb822eaacaaf9
3
+ size 3264240
ddpg-FishSwimDMC-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ddpg-FishSwimDMC-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:955a57ccdedf46b49a1272c14626806afca701bab1f7cef29914d75566076200
3
+ size 554351
ddpg-FishSwimDMC-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cac02a8138c57ee9a02e96dc2aab23bff2100fd48547a0b8dbc95646d509df08
3
+ size 1065455
ddpg-FishSwimDMC-v0/data ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x15db98280>",
8
+ "_build": "<function TD3Policy._build at 0x15db98310>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x15db983a0>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x15db98430>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x15db984c0>",
12
+ "forward": "<function TD3Policy.forward at 0x15db98550>",
13
+ "_predict": "<function TD3Policy._predict at 0x15db985e0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x15db98670>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x15db91ec0>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": {
21
+ "pi": [
22
+ 300,
23
+ 200
24
+ ],
25
+ "qf": [
26
+ 400,
27
+ 300
28
+ ]
29
+ },
30
+ "n_critics": 1
31
+ },
32
+ "observation_space": {
33
+ ":type:": "<class 'gym.spaces.box.Box'>",
34
+ ":serialized:": "gAWV8AwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIB0p5CfzDnXqGhiY7lJRrlW9JWvGr7hfRh8erhC4vMQHQHydm2wEAOmHRCq0f6bTNRvjZErBALn1PpPOwBukV42otNcEzbhDOpnPLBwaxvQ6HadCSsWEySgXLDzTVeLvE42lUfD/pIT8nTQhQa/opUBeirLgWlgVdb9VoQHOY7xp2dIQUdEWKuftY9tHH7dffHc/XQKEFtnZo45TxnNtSc3CJbydd1bV8MjPy+TO7N45v+w5TqEJkOXFFTAg0yWxN1tZ/5IgmJjFVlHzKm5WCDbWBjsiQlPto8jV3DW01+Gb8lTha3nZVrELu+YQ5yRTS+teeX6Awh8O7GtAMO1u7Y6FdK5n0znlZzUixKiQvq03clmkLzNmfhAK0I6kw7wyw2KWC96N0rxVdDYuvVeIn3H/CMrO2gXdkIiVb1rgVRzuRDKDVV1f26T+gJ4qFcC9pv42LVgr5NMQKiomWnNnfMll4AQz10ho6tEigSX53lu3ek3e9FVUmhjtqrxRTImKn69h8HIUciH+Txy3K5LpWNi9V+8GHIvmcvbinQfVncA66Q3R8pY99NdNR3t51qDM9Se/VyxIpYCMstvasRw4++W5hbAP/6CL4gO8jf+OuWaCWwQBsIcOj5ZgLmt3rrKYmibNFa/pX58xTywORKvwV7mcOeBc6fqqWtDdpKOC/zQpgmE812hP4P2NSi+WuLh4031qxfnmsF9q8QYvFhRBXKluGcdy/Wez5o0onEn9iQZ87UuwjKoOpsSJHeOlxOyrA44bQWj3x7Qy4glDl81+QPQPVxDdDfHo6iyNYgyQmEks4XAPnDXVkvCn5kEoyXmChhWrrCHFI8fsxMV75Tmh7CxQwvapMHdt0guopJqYgrPn8HG5+0ioX7mhf6sNWjUyf5jiO+lPG7SQaS2uKcZUkc+q0JTqCoMtulMYeyJ8NMMsZJlFj2ENviLXoS4zoumOwjLGCxg6E7fj2qM7ps8No0SKQssTP5y00I/msF2nXjL98zRRkh9Ogm2YCjC5b3fXef6vGFsyDxce8323OmlpqnBv8OXPhIIFhRZi8mWoYQzKoLjbDKw1LS5z+B7phfmTl6dvOHZaeCMxSAVtfVjtaOlVpRm/deateqqQOxw6BbKqGy6ntICu0SFmKft+UI/CVSdXp03MBZuOBbARbFGRG2VXIABPsVZAIn/1eBlEo3+wjQpGYVHBidpfkJLNoBzwzXZSyQ4NnRzkMRcSK3XhC4HiJV28CiYLHHOgPMlsiuhu5N8fPEDkJ4C6uvpsSmY97XcCxtiPist34nGE5nDAGOegrVKOAWPgQICCF7eN7MxEpSRUBj2ce3ctizvJoOijgL8gYaYVCrQfDheVsUbfOc9gMqTeP78P93DEiIMGN1yjbDyrIO/ekSBow8nazfHkT/Jks1q7hjdUYwyoQKJqtmlbThv0mpmRzWOrVxRGnjG+6MvAMoZ36//Mi9Za23GmfkrfzFMLs07Xxlm9hBnB0S6p40pPHGc5ZTcyRBeZAniO/j/J1/abgBSbagr1YWayArLO6MTg/uABNeatpvLbHHcal4jQJe/d/8/H+uFgJjTUX1OrotidDSPytoDut88NlGF+jMOyHvmRw68wYGfoDZPeoinIYbQAlb9nIbuP6SGSuo9ksWCiIGpfWBkJS4KhisCIX/zNRVys5AdtIa10jBqg1BL9w/7mT3h3sDjK6lnmPhwIK2JWu5bLoPj2EyY4mGmTyQCqyfBSS5rrF4W0TJA4nSPN3a2mZ0u+WxyO1UHj9U8ZoPPTQFGheU+8KYtffw7qNtDosdcbis7nqEjtMwVECc6dWIlVJIm8U6FSgG8811eCeGRl9PGIJVgatB6ZG6R6P+nImvsP2OSr2KPByHA4Hq7S8KSNRzf8gBMSkvXNbHpKcaTIZ902K3xUTIKDp2pv32ZqBuMIGH0WsStrPrS902cHgyuGgzybu9cEtQPd2T5PJCw+zmTAWmzIYwZdHkStROnqQ016mGcNricbIn2MZW4C5Hj2kq6LhxqST0m6M4wpa2sWoz+nu/5/962PHNWpKSquRCeJZYz5t3JqByUxX6tuYXRImm5Hdgu3pUHSSJ0nIeHMryD9y16a8+Hp7cvxyXJ5VdtTVAUhTFGzIQTAmYcgV+kPor8C3QqpVXmQ5lCLqcAGjR/+H/zp+o+mCbI49tV/oiK7wIpvliJJdS3B1a4olEaKr0uzVvfss7ZdSi63c56jhZPgqQjvd5yIAn5SKTyf31hXk0DRifHGejvMQdwgcmEDa3J71+h04tAZERyW+7cQOaTNUeka1q61J3iXFYxhhD//VpWE/yAVMhb+yFjpQq8m0/kX2r1esj7XfC1ctYbQSiUh9ZsWupah1WG2NagXVrg55ipXIkfamqExkJBx9E2FeNa21qgk31+y9GGfKdE3qlubeF3lkJndC2qfr+EuCYC0mc6KfVELFV/6B2IA2y0te20xRcAaQMESRhJQh4ZxcM5sDJC5KDmWUcjUSICkU6mDJd1p4BWaq8O8DGqlmSt6lJZRqosAo9pEW40+LmO8zYJQF6vtVTSJDhGSkqQp47JpxgFVT5QIhBREdIJjbk6kVjFnFw2TxHXmWOTGNBl20JhTuIW2ovWIk77rA0XbZRkQWqsU3Q1wF54TVsFgRVjUbQCGzMIrInypgCq8fa5Un5XpFt6eCtcsf+YyG0asmLvl+b1fD3yiHXk8wDq5A9u6YycyqCkRI8tSF87c71EToraZpBQjfYB79HYUIKjJG8g+FdPA1D1ZRJl7sUgAQoK/XqoEQVtAmwawC+tpYbrUn0hGWbwqL9UVuprgbHBkRlkqTBEgb10EqkPiMQgd6fAu2YouRc+1kj5dsfMPyNf2VPcoMOEa9dt7oxsCqczekIwaWpCMquYf606Inz29veH5+5S3mrayzRyVEe7DmC5SrVqTCIMaMXM69HstU+dktclTw+xk6dZfISnLU/X/qJuCk7ZfeEGxpdxVau7ZS2F+Wb7HLHOhEbJmkALrAQAO5qldLyZwohmcyq8uGsrBpkze3pNmKYr8MUUHl1/bsOWsXd68RL4KH6pK33LXUkZT3VJxEb0Os/2RjKOW1VLT44fo8+nCGRfmI9Lf4fpqqimHU1jslRIfZIh+JGYCbt9Z1a4UqWPjV18+7Udp2LBwSLVojDhQOErYJcOpK20b7+PUBtsFfx1vZAFfpmOJv5HGF8XUNlpqGXK/xI44/OgfucfBnnW6QZqz5K/ZH/c9eKIpR5kNSbojfpMlgdvKeZACwa0f9V2Ho516cdjm0lFEvBPeRv4m9KaaP1c9eCyJGjcEgGdOHpI9ZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
35
+ "dtype": "float32",
36
+ "_shape": [
37
+ 24
38
+ ],
39
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
40
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
41
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
42
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
43
+ "_np_random": "RandomState(MT19937)"
44
+ },
45
+ "action_space": {
46
+ ":type:": "<class 'gym.spaces.box.Box'>",
47
+ ":serialized:": "gAWVMgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAv5RoC0sFhZSMAUOUdJRSlIwEaGlnaJRoEyiWFAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAP5RoC0sFhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgUAAAAAAAAAAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYFAAAAAAAAAAEBAQEBlGgiSwWFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
48
+ "dtype": "float32",
49
+ "_shape": [
50
+ 5
51
+ ],
52
+ "low": "[-1. -1. -1. -1. -1.]",
53
+ "high": "[1. 1. 1. 1. 1.]",
54
+ "bounded_below": "[ True True True True True]",
55
+ "bounded_above": "[ True True True True True]",
56
+ "_np_random": "RandomState(MT19937)"
57
+ },
58
+ "n_envs": 1,
59
+ "num_timesteps": 1000000,
60
+ "_total_timesteps": 1000000,
61
+ "_num_timesteps_at_start": 0,
62
+ "seed": 0,
63
+ "action_noise": {
64
+ ":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
65
+ ":serialized:": "gAWVtQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwWFlIwBQ5R0lFKUjAZfc2lnbWGUaAkoligAAAAAAAAAMzMzMzMz0z8zMzMzMzPTPzMzMzMzM9M/MzMzMzMz0z8zMzMzMzPTP5RoEEsFhZRoFHSUUpSMA19kdJRHP4R64UeuFHuMDWluaXRpYWxfbm9pc2WUTowKbm9pc2VfcHJldpRoCSiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgQSwWFlGgUdJRSlHViLg==",
66
+ "_theta": 0.15,
67
+ "_mu": "[0. 0. 0. 0. 0.]",
68
+ "_sigma": "[0.3 0.3 0.3 0.3 0.3]",
69
+ "_dt": 0.01,
70
+ "initial_noise": null,
71
+ "noise_prev": "[0. 0. 0. 0. 0.]"
72
+ },
73
+ "start_time": 1673811021605748471,
74
+ "learning_rate": {
75
+ ":type:": "<class 'function'>",
76
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
77
+ },
78
+ "tensorboard_log": "runs/FishSwimDMC-v0__ddpg__4240116818__1673811018/FishSwimDMC-v0",
79
+ "lr_schedule": {
80
+ ":type:": "<class 'function'>",
81
+ ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
82
+ },
83
+ "_last_obs": null,
84
+ "_last_episode_starts": {
85
+ ":type:": "<class 'numpy.ndarray'>",
86
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
87
+ },
88
+ "_last_original_obs": {
89
+ ":type:": "<class 'numpy.ndarray'>",
90
+ ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAANKC7r5/mgk/dU3wO1ref7+W+H+/WQ+AP0MCgL8QeZ4+/9CjPquop719+Fq+JNSLOFGeHTpkFcu4QXIEvSO5jrySOPw8idSVvsXchz6RR2k+i9q9u0FeELsIurm72oUFu5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsYhpSMAUOUdJRSlC4="
91
+ },
92
+ "_episode_num": 1000,
93
+ "use_sde": false,
94
+ "sde_sample_freq": -1,
95
+ "_current_progress_remaining": 0.0,
96
+ "ep_info_buffer": {
97
+ ":type:": "<class 'collections.deque'>",
98
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFR3J5T/gVkCUhpRSlIwBbJRN6AOMAXSUR0DDrhs8YAKfdX2UKGgGaAloD0MI6ui4GtkXUUCUhpRSlGgVTegDaBZHQMOzZ1NHpbF1fZQoaAZoCWgPQwgvUb01sAJTQJSGlFKUaBVN6ANoFkdAw7i7u/k/8nV9lChoBmgJaA9DCJ7uPPGcGThAlIaUUpRoFU3oA2gWR0DDvggMc6vJdX2UKGgGaAloD0MIOgX52cixRkCUhpRSlGgVTegDaBZHQMPDWrLQokR1fZQoaAZoCWgPQwgfZi/bTlc+QJSGlFKUaBVN6ANoFkdAw8irgNPP9nV9lChoBmgJaA9DCKD9SBEZT1hAlIaUUpRoFU3oA2gWR0DDzf7sKLKndX2UKGgGaAloD0MIZysv+Z/oU0CUhpRSlGgVTegDaBZHQMPTUmNrCWN1fZQoaAZoCWgPQwiR7ucU5F5qQJSGlFKUaBVN6ANoFkdAw9idRrrPdHV9lChoBmgJaA9DCPjGEAAcGFlAlIaUUpRoFU3oA2gWR0DD3fJnpSrHdX2UKGgGaAloD0MIVG6iluY0UECUhpRSlGgVTegDaBZHQMPjPyflIVd1fZQoaAZoCWgPQwjtuyL43049QJSGlFKUaBVN6ANoFkdAw+iLb/Ot4nV9lChoBmgJaA9DCAb3Ax4YukJAlIaUUpRoFU3oA2gWR0DD7d3aSLZSdX2UKGgGaAloD0MIHLYtymz1U0CUhpRSlGgVTegDaBZHQMPzMHlXA/N1fZQoaAZoCWgPQwgtQUZAhe1dQJSGlFKUaBVN6ANoFkdAw/h+dtl7MXV9lChoBmgJaA9DCCUk0jb+UDpAlIaUUpRoFU3oA2gWR0DD/dX0btJGdX2UKGgGaAloD0MIuVM6WP9/NUCUhpRSlGgVTegDaBZHQMQDJlAVwgl1fZQoaAZoCWgPQwgQJO8cysBTQJSGlFKUaBVN6ANoFkdAxAh+5fdAPnV9lChoBmgJaA9DCCE+sOO/815AlIaUUpRoFU3oA2gWR0DEDcwbGWD6dX2UKGgGaAloD0MIml/NAYIZIUCUhpRSlGgVTegDaBZHQMQTI2vjfel1fZQoaAZoCWgPQwi6LCY2HxVbQJSGlFKUaBVN6ANoFkdAxBh18gIQe3V9lChoBmgJaA9DCH++LViqKxNAlIaUUpRoFU3oA2gWR0DEHc6RGMGYdX2UKGgGaAloD0MIB9LFppUwRUCUhpRSlGgVTegDaBZHQMQjKLGR3eN1fZQoaAZoCWgPQwhdv2A3bO9PQJSGlFKUaBVN6ANoFkdAxCh5rTH80nV9lChoBmgJaA9DCAXdXtIYx0VAlIaUUpRoFU3oA2gWR0DELcy3Td+HdX2UKGgGaAloD0MITOMXXkkyWkCUhpRSlGgVTegDaBZHQMQ2xwGnn+11fZQoaAZoCWgPQwjle0YiNPpcQJSGlFKUaBVN6ANoFkdAxDwWh8pkPXV9lChoBmgJaA9DCOllFMstJSlAlIaUUpRoFU3oA2gWR0DEQW8cZLqVdX2UKGgGaAloD0MIe5+qQgPFM0CUhpRSlGgVTegDaBZHQMRGwy+HrQh1fZQoaAZoCWgPQwjMQdDRqqdcQJSGlFKUaBVN6ANoFkdAxEwlCl7+k3V9lChoBmgJaA9DCBEcl3FTY1xAlIaUUpRoFU3oA2gWR0DEUXhd0JWvdX2UKGgGaAloD0MIRgw7jEmQVECUhpRSlGgVTegDaBZHQMRWzOFQEZB1fZQoaAZoCWgPQwgbL90kBs5ZQJSGlFKUaBVN6ANoFkdAxFwprULDynV9lChoBmgJaA9DCCU+d4L9PUBAlIaUUpRoFU3oA2gWR0DEYYDQ1JlKdX2UKGgGaAloD0MIgqj7AKTYSUCUhpRSlGgVTegDaBZHQMRm3HlfZ291fZQoaAZoCWgPQwgHtHQF2x1eQJSGlFKUaBVN6ANoFkdAxGwzC2MKkXV9lChoBmgJaA9DCJdYGY08hYZAlIaUUpRoFU3oA2gWR0DEcYo1ivxIdX2UKGgGaAloD0MILNMvEW+ZQUCUhpRSlGgVTegDaBZHQMR26kHMUyp1fZQoaAZoCWgPQwhHjnQGRjRLQJSGlFKUaBVN6ANoFkdAxHxMHzH0b3V9lChoBmgJaA9DCCrHZHH/oS5AlIaUUpRoFU3oA2gWR0DEgaPSro4ddX2UKGgGaAloD0MIeVc9YB5VWkCUhpRSlGgVTegDaBZHQMSHB8hTwUh1fZQoaAZoCWgPQwgra5vicSEzQJSGlFKUaBVN6ANoFkdAxIxkyDZlF3V9lChoBmgJaA9DCGrbMAqCFyRAlIaUUpRoFU3oA2gWR0DEkcJaHKwIdX2UKGgGaAloD0MIPbX66qqPU0CUhpRSlGgVTegDaBZHQMSXJixNZeR1fZQoaAZoCWgPQwj52F2gpAtVQJSGlFKUaBVN6ANoFkdAxJyNJI1+AnV9lChoBmgJaA9DCOif4GJFDSxAlIaUUpRoFU3oA2gWR0DEofYjnmq6dX2UKGgGaAloD0MI9fQR+MMTUECUhpRSlGgVTegDaBZHQMSnXO801qF1fZQoaAZoCWgPQwiIn/8evAZPQJSGlFKUaBVN6ANoFkdAxKy7k6Lfk3V9lChoBmgJaA9DCGVW73A7N1RAlIaUUpRoFU3oA2gWR0DEshsH4XXRdX2UKGgGaAloD0MI9PqT+NxQXECUhpRSlGgVTegDaBZHQMS3iq46Oo51fZQoaAZoCWgPQwi9baZCPApBQJSGlFKUaBVN6ANoFkdAxMCTu1F6RnV9lChoBmgJaA9DCDqRYKqZcTRAlIaUUpRoFU3oA2gWR0DExfy1maphdX2UKGgGaAloD0MInkXvVMBpW0CUhpRSlGgVTegDaBZHQMTLZWcSXdF1fZQoaAZoCWgPQwjcgqW6gBJdQJSGlFKUaBVN6ANoFkdAxNDFZ/0/W3V9lChoBmgJaA9DCKkvSzs1zzhAlIaUUpRoFU3oA2gWR0DE1i7+xW1ddX2UKGgGaAloD0MInRIQk3CQYECUhpRSlGgVTegDaBZHQMTbmzCUHIJ1fZQoaAZoCWgPQwhO0ZFc/o5VQJSGlFKUaBVN6ANoFkdAxOEFfZVXFXV9lChoBmgJaA9DCHA/4IEBGVVAlIaUUpRoFU3oA2gWR0DE5mZRwZO0dX2UKGgGaAloD0MIhuXPtwVMVUCUhpRSlGgVTegDaBZHQMTr0C7Ciyp1fZQoaAZoCWgPQwhO7KF9rLZaQJSGlFKUaBVN6ANoFkdAxPE72nsLOXV9lChoBmgJaA9DCMqHoGr0JkZAlIaUUpRoFU3oA2gWR0DE9qZNO/L1dX2UKGgGaAloD0MIvTlcqz1eXkCUhpRSlGgVTegDaBZHQMT8EEnTiKl1fZQoaAZoCWgPQwij5UAPtUlPQJSGlFKUaBVN6ANoFkdAxQF27Rv3rXV9lChoBmgJaA9DCE88ZwsIolBAlIaUUpRoFU3oA2gWR0DFBuFtygf2dX2UKGgGaAloD0MIGAXB49udSUCUhpRSlGgVTegDaBZHQMUMSGF8G9p1fZQoaAZoCWgPQwgHJGHfTuBZQJSGlFKUaBVN6ANoFkdAxRG4NMGorHV9lChoBmgJaA9DCA1TW+ogjVhAlIaUUpRoFU3oA2gWR0DFFxxDkU9IdX2UKGgGaAloD0MIxCYyc4GbLECUhpRSlGgVTegDaBZHQMUciVnM+vB1fZQoaAZoCWgPQwjuXu6TQxWFQJSGlFKUaBVN6ANoFkdAxSHz7SiM53V9lChoBmgJaA9DCPUSY5l+Q11AlIaUUpRoFU3oA2gWR0DFJ1196TnrdX2UKGgGaAloD0MIpDZxcr9PVECUhpRSlGgVTegDaBZHQMUswnLidat1fZQoaAZoCWgPQwh40VeQZhRSQJSGlFKUaBVN6ANoFkdAxTIvhegL7XV9lChoBmgJaA9DCCU+d4L9zUNAlIaUUpRoFU3oA2gWR0DFN5Xg75mAdX2UKGgGaAloD0MIO29jsyPFL0CUhpRSlGgVTegDaBZHQMU9BPZh8Y11fZQoaAZoCWgPQwghV+pZEMhXQJSGlFKUaBVN6ANoFkdAxUJrnFo+OnV9lChoBmgJaA9DCILjMm5qrkRAlIaUUpRoFU3oA2gWR0DFS3qflIVedX2UKGgGaAloD0MItJQsJ6EaSECUhpRSlGgVTegDaBZHQMVQ7PY4ACJ1fZQoaAZoCWgPQwgNchdhiuBHQJSGlFKUaBVN6ANoFkdAxVZWRHww03V9lChoBmgJaA9DCNlCkIMSxhhAlIaUUpRoFU3oA2gWR0DFW8y7mMfjdX2UKGgGaAloD0MITBk4oKUMUkCUhpRSlGgVTegDaBZHQMVhN5X+2mZ1fZQoaAZoCWgPQwhprP2d7exZQJSGlFKUaBVN6ANoFkdAxWaqxyn1nXV9lChoBmgJaA9DCHGRe7q6Q1xAlIaUUpRoFU3oA2gWR0DFbB3RVp9JdX2UKGgGaAloD0MIE5oklpS1QUCUhpRSlGgVTegDaBZHQMVxkcR+SbJ1fZQoaAZoCWgPQwj8OQX52VhTQJSGlFKUaBVN6ANoFkdAxXcJ2ECeVnV9lChoBmgJaA9DCLyzdtuFzVhAlIaUUpRoFU3oA2gWR0DFfH+e6I3zdX2UKGgGaAloD0MI/FQVGoiqXUCUhpRSlGgVTegDaBZHQMWB8ZtNzsB1fZQoaAZoCWgPQwiDaRg+Ih9WQJSGlFKUaBVN6ANoFkdAxYdfiF0xM3V9lChoBmgJaA9DCDykGCDR5ClAlIaUUpRoFU3oA2gWR0DFjNpGrjo7dX2UKGgGaAloD0MI9G+X/bpmV0CUhpRSlGgVTegDaBZHQMWSR6gVXV91fZQoaAZoCWgPQwjvyi4YXIMhQJSGlFKUaBVN6ANoFkdAxZe6xu89OnV9lChoBmgJaA9DCOXv3lFj1lZAlIaUUpRoFU3oA2gWR0DFnSlSS/0vdX2UKGgGaAloD0MIxEMYP407VkCUhpRSlGgVTegDaBZHQMWiljfvWpZ1fZQoaAZoCWgPQwgYlj/fFsJDQJSGlFKUaBVN6ANoFkdAxagB5Qgs9XV9lChoBmgJaA9DCC/E6o8wcFZAlIaUUpRoFU3oA2gWR0DFrXQD5j6OdX2UKGgGaAloD0MI1qcck8W1SkCUhpRSlGgVTegDaBZHQMWy3qq4pc51fZQoaAZoCWgPQwjsNNJSeTNXQJSGlFKUaBVN6ANoFkdAxbhNZ1V5r3V9lChoBmgJaA9DCEd0z7pGSVdAlIaUUpRoFU3oA2gWR0DFvcSvmozfdX2UKGgGaAloD0MI4gSm07pPSkCUhpRSlGgVTegDaBZHQMXDM3yqdYp1fZQoaAZoCWgPQwgLDFnd6v5UQJSGlFKUaBVN6ANoFkdAxcip/ffoBHV9lChoBmgJaA9DCAn9TL1ua1VAlIaUUpRoFU3oA2gWR0DFzh6qABkqdWUu"
99
+ },
100
+ "ep_success_buffer": {
101
+ ":type:": "<class 'collections.deque'>",
102
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
103
+ },
104
+ "_n_updates": 1000000,
105
+ "buffer_size": 1,
106
+ "batch_size": 64,
107
+ "learning_starts": 100,
108
+ "tau": 0.005,
109
+ "gamma": 0.99,
110
+ "gradient_steps": -1,
111
+ "optimize_memory_usage": false,
112
+ "replay_buffer_class": {
113
+ ":type:": "<class 'abc.ABCMeta'>",
114
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
115
+ "__module__": "stable_baselines3.common.buffers",
116
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
117
+ "__init__": "<function ReplayBuffer.__init__ at 0x15db96dd0>",
118
+ "add": "<function ReplayBuffer.add at 0x15db96e60>",
119
+ "sample": "<function ReplayBuffer.sample at 0x15db96ef0>",
120
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x15db96f80>",
121
+ "__abstractmethods__": "frozenset()",
122
+ "_abc_impl": "<_abc._abc_data object at 0x15db39700>"
123
+ },
124
+ "replay_buffer_kwargs": {},
125
+ "train_freq": {
126
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
127
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
128
+ },
129
+ "use_sde_at_warmup": false,
130
+ "policy_delay": 1,
131
+ "target_noise_clip": 0.0,
132
+ "target_policy_noise": 0.1,
133
+ "actor_batch_norm_stats": [],
134
+ "critic_batch_norm_stats": [],
135
+ "actor_batch_norm_stats_target": [],
136
+ "critic_batch_norm_stats_target": []
137
+ }
ddpg-FishSwimDMC-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c14fc564d98aa0b190a5e7c0de522ea494d14b803e27f0b8786dac166c6e199
3
+ size 1618077
ddpg-FishSwimDMC-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ddpg-FishSwimDMC-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
2
+ - Python: 3.10.9
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f161a14dd58de1a403ff13064f9eb8a19b45aad34514f318e76d856db588d3ce
3
+ size 111307
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 67.17730250000001, "std_reward": 28.185263075851246, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T08:58:12.647016"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:952ac7f08eda51dd4195bd74ce5c03c676a40c3f1d1e919f56a55f48d0748d76
3
+ size 42109