Quentin Gallouédec
commited on
Commit
·
fb1ec22
1
Parent(s):
37959a3
Initial commit
Browse files- .gitattributes +1 -0
- README.md +75 -0
- args.yml +83 -0
- config.yml +17 -0
- ddpg-FishSwimDMC-v0.zip +3 -0
- ddpg-FishSwimDMC-v0/_stable_baselines3_version +1 -0
- ddpg-FishSwimDMC-v0/actor.optimizer.pth +3 -0
- ddpg-FishSwimDMC-v0/critic.optimizer.pth +3 -0
- ddpg-FishSwimDMC-v0/data +137 -0
- ddpg-FishSwimDMC-v0/policy.pth +3 -0
- ddpg-FishSwimDMC-v0/pytorch_variables.pth +3 -0
- ddpg-FishSwimDMC-v0/system_info.txt +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FishSwimDMC-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DDPG
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: FishSwimDMC-v0
|
16 |
+
type: FishSwimDMC-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 67.18 +/- 28.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DDPG** Agent playing **FishSwimDMC-v0**
|
25 |
+
This is a trained model of a **DDPG** agent playing **FishSwimDMC-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env FishSwimDMC-v0 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ddpg --env FishSwimDMC-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env FishSwimDMC-v0 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ddpg --env FishSwimDMC-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ddpg --env FishSwimDMC-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ddpg --env FishSwimDMC-v0 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 64),
|
66 |
+
('gamma', 0.99),
|
67 |
+
('learning_rate', 0.0001),
|
68 |
+
('n_timesteps', 1000000.0),
|
69 |
+
('noise_std', 0.3),
|
70 |
+
('noise_type', 'ornstein-uhlenbeck'),
|
71 |
+
('policy', 'MlpPolicy'),
|
72 |
+
('policy_kwargs',
|
73 |
+
'dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))'),
|
74 |
+
('normalize', False)])
|
75 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ddpg
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- FishSwimDMC-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1921464222
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/FishSwimDMC-v0__ddpg__1921464222__1673811018
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- qgallouedec
|
78 |
+
- - wandb_project_name
|
79 |
+
- dmc
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 64
|
4 |
+
- - gamma
|
5 |
+
- 0.99
|
6 |
+
- - learning_rate
|
7 |
+
- 0.0001
|
8 |
+
- - n_timesteps
|
9 |
+
- 1000000.0
|
10 |
+
- - noise_std
|
11 |
+
- 0.3
|
12 |
+
- - noise_type
|
13 |
+
- ornstein-uhlenbeck
|
14 |
+
- - policy
|
15 |
+
- MlpPolicy
|
16 |
+
- - policy_kwargs
|
17 |
+
- dict(net_arch=dict(pi=[300, 200], qf=[400, 300]))
|
ddpg-FishSwimDMC-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f9edf92a9d5cfc6612146f95822bcc4fe9ca971c7a16cf7756fb822eaacaaf9
|
3 |
+
size 3264240
|
ddpg-FishSwimDMC-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ddpg-FishSwimDMC-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:955a57ccdedf46b49a1272c14626806afca701bab1f7cef29914d75566076200
|
3 |
+
size 554351
|
ddpg-FishSwimDMC-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cac02a8138c57ee9a02e96dc2aab23bff2100fd48547a0b8dbc95646d509df08
|
3 |
+
size 1065455
|
ddpg-FishSwimDMC-v0/data
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x15db98280>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x15db98310>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x15db983a0>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x15db98430>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x15db984c0>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x15db98550>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x15db985e0>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x15db98670>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x15db91ec0>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": {
|
21 |
+
"pi": [
|
22 |
+
300,
|
23 |
+
200
|
24 |
+
],
|
25 |
+
"qf": [
|
26 |
+
400,
|
27 |
+
300
|
28 |
+
]
|
29 |
+
},
|
30 |
+
"n_critics": 1
|
31 |
+
},
|
32 |
+
"observation_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWV8AwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLGIWUjAFDlHSUUpSMBGhpZ2iUaBMolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgLSxiFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIksYhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIB0p5CfzDnXqGhiY7lJRrlW9JWvGr7hfRh8erhC4vMQHQHydm2wEAOmHRCq0f6bTNRvjZErBALn1PpPOwBukV42otNcEzbhDOpnPLBwaxvQ6HadCSsWEySgXLDzTVeLvE42lUfD/pIT8nTQhQa/opUBeirLgWlgVdb9VoQHOY7xp2dIQUdEWKuftY9tHH7dffHc/XQKEFtnZo45TxnNtSc3CJbydd1bV8MjPy+TO7N45v+w5TqEJkOXFFTAg0yWxN1tZ/5IgmJjFVlHzKm5WCDbWBjsiQlPto8jV3DW01+Gb8lTha3nZVrELu+YQ5yRTS+teeX6Awh8O7GtAMO1u7Y6FdK5n0znlZzUixKiQvq03clmkLzNmfhAK0I6kw7wyw2KWC96N0rxVdDYuvVeIn3H/CMrO2gXdkIiVb1rgVRzuRDKDVV1f26T+gJ4qFcC9pv42LVgr5NMQKiomWnNnfMll4AQz10ho6tEigSX53lu3ek3e9FVUmhjtqrxRTImKn69h8HIUciH+Txy3K5LpWNi9V+8GHIvmcvbinQfVncA66Q3R8pY99NdNR3t51qDM9Se/VyxIpYCMstvasRw4++W5hbAP/6CL4gO8jf+OuWaCWwQBsIcOj5ZgLmt3rrKYmibNFa/pX58xTywORKvwV7mcOeBc6fqqWtDdpKOC/zQpgmE812hP4P2NSi+WuLh4031qxfnmsF9q8QYvFhRBXKluGcdy/Wez5o0onEn9iQZ87UuwjKoOpsSJHeOlxOyrA44bQWj3x7Qy4glDl81+QPQPVxDdDfHo6iyNYgyQmEks4XAPnDXVkvCn5kEoyXmChhWrrCHFI8fsxMV75Tmh7CxQwvapMHdt0guopJqYgrPn8HG5+0ioX7mhf6sNWjUyf5jiO+lPG7SQaS2uKcZUkc+q0JTqCoMtulMYeyJ8NMMsZJlFj2ENviLXoS4zoumOwjLGCxg6E7fj2qM7ps8No0SKQssTP5y00I/msF2nXjL98zRRkh9Ogm2YCjC5b3fXef6vGFsyDxce8323OmlpqnBv8OXPhIIFhRZi8mWoYQzKoLjbDKw1LS5z+B7phfmTl6dvOHZaeCMxSAVtfVjtaOlVpRm/deateqqQOxw6BbKqGy6ntICu0SFmKft+UI/CVSdXp03MBZuOBbARbFGRG2VXIABPsVZAIn/1eBlEo3+wjQpGYVHBidpfkJLNoBzwzXZSyQ4NnRzkMRcSK3XhC4HiJV28CiYLHHOgPMlsiuhu5N8fPEDkJ4C6uvpsSmY97XcCxtiPist34nGE5nDAGOegrVKOAWPgQICCF7eN7MxEpSRUBj2ce3ctizvJoOijgL8gYaYVCrQfDheVsUbfOc9gMqTeP78P93DEiIMGN1yjbDyrIO/ekSBow8nazfHkT/Jks1q7hjdUYwyoQKJqtmlbThv0mpmRzWOrVxRGnjG+6MvAMoZ36//Mi9Za23GmfkrfzFMLs07Xxlm9hBnB0S6p40pPHGc5ZTcyRBeZAniO/j/J1/abgBSbagr1YWayArLO6MTg/uABNeatpvLbHHcal4jQJe/d/8/H+uFgJjTUX1OrotidDSPytoDut88NlGF+jMOyHvmRw68wYGfoDZPeoinIYbQAlb9nIbuP6SGSuo9ksWCiIGpfWBkJS4KhisCIX/zNRVys5AdtIa10jBqg1BL9w/7mT3h3sDjK6lnmPhwIK2JWu5bLoPj2EyY4mGmTyQCqyfBSS5rrF4W0TJA4nSPN3a2mZ0u+WxyO1UHj9U8ZoPPTQFGheU+8KYtffw7qNtDosdcbis7nqEjtMwVECc6dWIlVJIm8U6FSgG8811eCeGRl9PGIJVgatB6ZG6R6P+nImvsP2OSr2KPByHA4Hq7S8KSNRzf8gBMSkvXNbHpKcaTIZ902K3xUTIKDp2pv32ZqBuMIGH0WsStrPrS902cHgyuGgzybu9cEtQPd2T5PJCw+zmTAWmzIYwZdHkStROnqQ016mGcNricbIn2MZW4C5Hj2kq6LhxqST0m6M4wpa2sWoz+nu/5/962PHNWpKSquRCeJZYz5t3JqByUxX6tuYXRImm5Hdgu3pUHSSJ0nIeHMryD9y16a8+Hp7cvxyXJ5VdtTVAUhTFGzIQTAmYcgV+kPor8C3QqpVXmQ5lCLqcAGjR/+H/zp+o+mCbI49tV/oiK7wIpvliJJdS3B1a4olEaKr0uzVvfss7ZdSi63c56jhZPgqQjvd5yIAn5SKTyf31hXk0DRifHGejvMQdwgcmEDa3J71+h04tAZERyW+7cQOaTNUeka1q61J3iXFYxhhD//VpWE/yAVMhb+yFjpQq8m0/kX2r1esj7XfC1ctYbQSiUh9ZsWupah1WG2NagXVrg55ipXIkfamqExkJBx9E2FeNa21qgk31+y9GGfKdE3qlubeF3lkJndC2qfr+EuCYC0mc6KfVELFV/6B2IA2y0te20xRcAaQMESRhJQh4ZxcM5sDJC5KDmWUcjUSICkU6mDJd1p4BWaq8O8DGqlmSt6lJZRqosAo9pEW40+LmO8zYJQF6vtVTSJDhGSkqQp47JpxgFVT5QIhBREdIJjbk6kVjFnFw2TxHXmWOTGNBl20JhTuIW2ovWIk77rA0XbZRkQWqsU3Q1wF54TVsFgRVjUbQCGzMIrInypgCq8fa5Un5XpFt6eCtcsf+YyG0asmLvl+b1fD3yiHXk8wDq5A9u6YycyqCkRI8tSF87c71EToraZpBQjfYB79HYUIKjJG8g+FdPA1D1ZRJl7sUgAQoK/XqoEQVtAmwawC+tpYbrUn0hGWbwqL9UVuprgbHBkRlkqTBEgb10EqkPiMQgd6fAu2YouRc+1kj5dsfMPyNf2VPcoMOEa9dt7oxsCqczekIwaWpCMquYf606Inz29veH5+5S3mrayzRyVEe7DmC5SrVqTCIMaMXM69HstU+dktclTw+xk6dZfISnLU/X/qJuCk7ZfeEGxpdxVau7ZS2F+Wb7HLHOhEbJmkALrAQAO5qldLyZwohmcyq8uGsrBpkze3pNmKYr8MUUHl1/bsOWsXd68RL4KH6pK33LXUkZT3VJxEb0Os/2RjKOW1VLT44fo8+nCGRfmI9Lf4fpqqimHU1jslRIfZIh+JGYCbt9Z1a4UqWPjV18+7Udp2LBwSLVojDhQOErYJcOpK20b7+PUBtsFfx1vZAFfpmOJv5HGF8XUNlpqGXK/xI44/OgfucfBnnW6QZqz5K/ZH/c9eKIpR5kNSbojfpMlgdvKeZACwa0f9V2Ho516cdjm0lFEvBPeRv4m9KaaP1c9eCyJGjcEgGdOHpI9ZRoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
24
|
38 |
+
],
|
39 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
40 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
41 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
42 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"action_space": {
|
46 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
47 |
+
":serialized:": "gAWVMgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWFAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAv5RoC0sFhZSMAUOUdJRSlIwEaGlnaJRoEyiWFAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAP5RoC0sFhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgUAAAAAAAAAAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYFAAAAAAAAAAEBAQEBlGgiSwWFlGgWdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgujBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBMolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgIjAJ1NJSJiIeUUpQoSwNoDE5OTkr/////Sv////9LAHSUYk1wAoWUaBZ0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
48 |
+
"dtype": "float32",
|
49 |
+
"_shape": [
|
50 |
+
5
|
51 |
+
],
|
52 |
+
"low": "[-1. -1. -1. -1. -1.]",
|
53 |
+
"high": "[1. 1. 1. 1. 1.]",
|
54 |
+
"bounded_below": "[ True True True True True]",
|
55 |
+
"bounded_above": "[ True True True True True]",
|
56 |
+
"_np_random": "RandomState(MT19937)"
|
57 |
+
},
|
58 |
+
"n_envs": 1,
|
59 |
+
"num_timesteps": 1000000,
|
60 |
+
"_total_timesteps": 1000000,
|
61 |
+
"_num_timesteps_at_start": 0,
|
62 |
+
"seed": 0,
|
63 |
+
"action_noise": {
|
64 |
+
":type:": "<class 'stable_baselines3.common.noise.OrnsteinUhlenbeckActionNoise'>",
|
65 |
+
":serialized:": "gAWVtQEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMHE9ybnN0ZWluVWhsZW5iZWNrQWN0aW9uTm9pc2WUk5QpgZR9lCiMBl90aGV0YZRHP8MzMzMzMzOMA19tdZSMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwWFlIwBQ5R0lFKUjAZfc2lnbWGUaAkoligAAAAAAAAAMzMzMzMz0z8zMzMzMzPTPzMzMzMzM9M/MzMzMzMz0z8zMzMzMzPTP5RoEEsFhZRoFHSUUpSMA19kdJRHP4R64UeuFHuMDWluaXRpYWxfbm9pc2WUTowKbm9pc2VfcHJldpRoCSiWKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgQSwWFlGgUdJRSlHViLg==",
|
66 |
+
"_theta": 0.15,
|
67 |
+
"_mu": "[0. 0. 0. 0. 0.]",
|
68 |
+
"_sigma": "[0.3 0.3 0.3 0.3 0.3]",
|
69 |
+
"_dt": 0.01,
|
70 |
+
"initial_noise": null,
|
71 |
+
"noise_prev": "[0. 0. 0. 0. 0.]"
|
72 |
+
},
|
73 |
+
"start_time": 1673811021605748471,
|
74 |
+
"learning_rate": {
|
75 |
+
":type:": "<class 'function'>",
|
76 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
77 |
+
},
|
78 |
+
"tensorboard_log": "runs/FishSwimDMC-v0__ddpg__4240116818__1673811018/FishSwimDMC-v0",
|
79 |
+
"lr_schedule": {
|
80 |
+
":type:": "<class 'function'>",
|
81 |
+
":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3AvZW52X2RtYy9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9lbnZfZG1jL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
82 |
+
},
|
83 |
+
"_last_obs": null,
|
84 |
+
"_last_episode_starts": {
|
85 |
+
":type:": "<class 'numpy.ndarray'>",
|
86 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
87 |
+
},
|
88 |
+
"_last_original_obs": {
|
89 |
+
":type:": "<class 'numpy.ndarray'>",
|
90 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAANKC7r5/mgk/dU3wO1ref7+W+H+/WQ+AP0MCgL8QeZ4+/9CjPquop719+Fq+JNSLOFGeHTpkFcu4QXIEvSO5jrySOPw8idSVvsXchz6RR2k+i9q9u0FeELsIurm72oUFu5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsYhpSMAUOUdJRSlC4="
|
91 |
+
},
|
92 |
+
"_episode_num": 1000,
|
93 |
+
"use_sde": false,
|
94 |
+
"sde_sample_freq": -1,
|
95 |
+
"_current_progress_remaining": 0.0,
|
96 |
+
"ep_info_buffer": {
|
97 |
+
":type:": "<class 'collections.deque'>",
|
98 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFR3J5T/gVkCUhpRSlIwBbJRN6AOMAXSUR0DDrhs8YAKfdX2UKGgGaAloD0MI6ui4GtkXUUCUhpRSlGgVTegDaBZHQMOzZ1NHpbF1fZQoaAZoCWgPQwgvUb01sAJTQJSGlFKUaBVN6ANoFkdAw7i7u/k/8nV9lChoBmgJaA9DCJ7uPPGcGThAlIaUUpRoFU3oA2gWR0DDvggMc6vJdX2UKGgGaAloD0MIOgX52cixRkCUhpRSlGgVTegDaBZHQMPDWrLQokR1fZQoaAZoCWgPQwgfZi/bTlc+QJSGlFKUaBVN6ANoFkdAw8irgNPP9nV9lChoBmgJaA9DCKD9SBEZT1hAlIaUUpRoFU3oA2gWR0DDzf7sKLKndX2UKGgGaAloD0MIZysv+Z/oU0CUhpRSlGgVTegDaBZHQMPTUmNrCWN1fZQoaAZoCWgPQwiR7ucU5F5qQJSGlFKUaBVN6ANoFkdAw9idRrrPdHV9lChoBmgJaA9DCPjGEAAcGFlAlIaUUpRoFU3oA2gWR0DD3fJnpSrHdX2UKGgGaAloD0MIVG6iluY0UECUhpRSlGgVTegDaBZHQMPjPyflIVd1fZQoaAZoCWgPQwjtuyL43049QJSGlFKUaBVN6ANoFkdAw+iLb/Ot4nV9lChoBmgJaA9DCAb3Ax4YukJAlIaUUpRoFU3oA2gWR0DD7d3aSLZSdX2UKGgGaAloD0MIHLYtymz1U0CUhpRSlGgVTegDaBZHQMPzMHlXA/N1fZQoaAZoCWgPQwgtQUZAhe1dQJSGlFKUaBVN6ANoFkdAw/h+dtl7MXV9lChoBmgJaA9DCCUk0jb+UDpAlIaUUpRoFU3oA2gWR0DD/dX0btJGdX2UKGgGaAloD0MIuVM6WP9/NUCUhpRSlGgVTegDaBZHQMQDJlAVwgl1fZQoaAZoCWgPQwgQJO8cysBTQJSGlFKUaBVN6ANoFkdAxAh+5fdAPnV9lChoBmgJaA9DCCE+sOO/815AlIaUUpRoFU3oA2gWR0DEDcwbGWD6dX2UKGgGaAloD0MIml/NAYIZIUCUhpRSlGgVTegDaBZHQMQTI2vjfel1fZQoaAZoCWgPQwi6LCY2HxVbQJSGlFKUaBVN6ANoFkdAxBh18gIQe3V9lChoBmgJaA9DCH++LViqKxNAlIaUUpRoFU3oA2gWR0DEHc6RGMGYdX2UKGgGaAloD0MIB9LFppUwRUCUhpRSlGgVTegDaBZHQMQjKLGR3eN1fZQoaAZoCWgPQwhdv2A3bO9PQJSGlFKUaBVN6ANoFkdAxCh5rTH80nV9lChoBmgJaA9DCAXdXtIYx0VAlIaUUpRoFU3oA2gWR0DELcy3Td+HdX2UKGgGaAloD0MITOMXXkkyWkCUhpRSlGgVTegDaBZHQMQ2xwGnn+11fZQoaAZoCWgPQwjle0YiNPpcQJSGlFKUaBVN6ANoFkdAxDwWh8pkPXV9lChoBmgJaA9DCOllFMstJSlAlIaUUpRoFU3oA2gWR0DEQW8cZLqVdX2UKGgGaAloD0MIe5+qQgPFM0CUhpRSlGgVTegDaBZHQMRGwy+HrQh1fZQoaAZoCWgPQwjMQdDRqqdcQJSGlFKUaBVN6ANoFkdAxEwlCl7+k3V9lChoBmgJaA9DCBEcl3FTY1xAlIaUUpRoFU3oA2gWR0DEUXhd0JWvdX2UKGgGaAloD0MIRgw7jEmQVECUhpRSlGgVTegDaBZHQMRWzOFQEZB1fZQoaAZoCWgPQwgbL90kBs5ZQJSGlFKUaBVN6ANoFkdAxFwprULDynV9lChoBmgJaA9DCCU+d4L9PUBAlIaUUpRoFU3oA2gWR0DEYYDQ1JlKdX2UKGgGaAloD0MIgqj7AKTYSUCUhpRSlGgVTegDaBZHQMRm3HlfZ291fZQoaAZoCWgPQwgHtHQF2x1eQJSGlFKUaBVN6ANoFkdAxGwzC2MKkXV9lChoBmgJaA9DCJdYGY08hYZAlIaUUpRoFU3oA2gWR0DEcYo1ivxIdX2UKGgGaAloD0MILNMvEW+ZQUCUhpRSlGgVTegDaBZHQMR26kHMUyp1fZQoaAZoCWgPQwhHjnQGRjRLQJSGlFKUaBVN6ANoFkdAxHxMHzH0b3V9lChoBmgJaA9DCCrHZHH/oS5AlIaUUpRoFU3oA2gWR0DEgaPSro4ddX2UKGgGaAloD0MIeVc9YB5VWkCUhpRSlGgVTegDaBZHQMSHB8hTwUh1fZQoaAZoCWgPQwgra5vicSEzQJSGlFKUaBVN6ANoFkdAxIxkyDZlF3V9lChoBmgJaA9DCGrbMAqCFyRAlIaUUpRoFU3oA2gWR0DEkcJaHKwIdX2UKGgGaAloD0MIPbX66qqPU0CUhpRSlGgVTegDaBZHQMSXJixNZeR1fZQoaAZoCWgPQwj52F2gpAtVQJSGlFKUaBVN6ANoFkdAxJyNJI1+AnV9lChoBmgJaA9DCOif4GJFDSxAlIaUUpRoFU3oA2gWR0DEofYjnmq6dX2UKGgGaAloD0MI9fQR+MMTUECUhpRSlGgVTegDaBZHQMSnXO801qF1fZQoaAZoCWgPQwiIn/8evAZPQJSGlFKUaBVN6ANoFkdAxKy7k6Lfk3V9lChoBmgJaA9DCGVW73A7N1RAlIaUUpRoFU3oA2gWR0DEshsH4XXRdX2UKGgGaAloD0MI9PqT+NxQXECUhpRSlGgVTegDaBZHQMS3iq46Oo51fZQoaAZoCWgPQwi9baZCPApBQJSGlFKUaBVN6ANoFkdAxMCTu1F6RnV9lChoBmgJaA9DCDqRYKqZcTRAlIaUUpRoFU3oA2gWR0DExfy1maphdX2UKGgGaAloD0MInkXvVMBpW0CUhpRSlGgVTegDaBZHQMTLZWcSXdF1fZQoaAZoCWgPQwjcgqW6gBJdQJSGlFKUaBVN6ANoFkdAxNDFZ/0/W3V9lChoBmgJaA9DCKkvSzs1zzhAlIaUUpRoFU3oA2gWR0DE1i7+xW1ddX2UKGgGaAloD0MInRIQk3CQYECUhpRSlGgVTegDaBZHQMTbmzCUHIJ1fZQoaAZoCWgPQwhO0ZFc/o5VQJSGlFKUaBVN6ANoFkdAxOEFfZVXFXV9lChoBmgJaA9DCHA/4IEBGVVAlIaUUpRoFU3oA2gWR0DE5mZRwZO0dX2UKGgGaAloD0MIhuXPtwVMVUCUhpRSlGgVTegDaBZHQMTr0C7Ciyp1fZQoaAZoCWgPQwhO7KF9rLZaQJSGlFKUaBVN6ANoFkdAxPE72nsLOXV9lChoBmgJaA9DCMqHoGr0JkZAlIaUUpRoFU3oA2gWR0DE9qZNO/L1dX2UKGgGaAloD0MIvTlcqz1eXkCUhpRSlGgVTegDaBZHQMT8EEnTiKl1fZQoaAZoCWgPQwij5UAPtUlPQJSGlFKUaBVN6ANoFkdAxQF27Rv3rXV9lChoBmgJaA9DCE88ZwsIolBAlIaUUpRoFU3oA2gWR0DFBuFtygf2dX2UKGgGaAloD0MIGAXB49udSUCUhpRSlGgVTegDaBZHQMUMSGF8G9p1fZQoaAZoCWgPQwgHJGHfTuBZQJSGlFKUaBVN6ANoFkdAxRG4NMGorHV9lChoBmgJaA9DCA1TW+ogjVhAlIaUUpRoFU3oA2gWR0DFFxxDkU9IdX2UKGgGaAloD0MIxCYyc4GbLECUhpRSlGgVTegDaBZHQMUciVnM+vB1fZQoaAZoCWgPQwjuXu6TQxWFQJSGlFKUaBVN6ANoFkdAxSHz7SiM53V9lChoBmgJaA9DCPUSY5l+Q11AlIaUUpRoFU3oA2gWR0DFJ1196TnrdX2UKGgGaAloD0MIpDZxcr9PVECUhpRSlGgVTegDaBZHQMUswnLidat1fZQoaAZoCWgPQwh40VeQZhRSQJSGlFKUaBVN6ANoFkdAxTIvhegL7XV9lChoBmgJaA9DCCU+d4L9zUNAlIaUUpRoFU3oA2gWR0DFN5Xg75mAdX2UKGgGaAloD0MIO29jsyPFL0CUhpRSlGgVTegDaBZHQMU9BPZh8Y11fZQoaAZoCWgPQwghV+pZEMhXQJSGlFKUaBVN6ANoFkdAxUJrnFo+OnV9lChoBmgJaA9DCILjMm5qrkRAlIaUUpRoFU3oA2gWR0DFS3qflIVedX2UKGgGaAloD0MItJQsJ6EaSECUhpRSlGgVTegDaBZHQMVQ7PY4ACJ1fZQoaAZoCWgPQwgNchdhiuBHQJSGlFKUaBVN6ANoFkdAxVZWRHww03V9lChoBmgJaA9DCNlCkIMSxhhAlIaUUpRoFU3oA2gWR0DFW8y7mMfjdX2UKGgGaAloD0MITBk4oKUMUkCUhpRSlGgVTegDaBZHQMVhN5X+2mZ1fZQoaAZoCWgPQwhprP2d7exZQJSGlFKUaBVN6ANoFkdAxWaqxyn1nXV9lChoBmgJaA9DCHGRe7q6Q1xAlIaUUpRoFU3oA2gWR0DFbB3RVp9JdX2UKGgGaAloD0MIE5oklpS1QUCUhpRSlGgVTegDaBZHQMVxkcR+SbJ1fZQoaAZoCWgPQwj8OQX52VhTQJSGlFKUaBVN6ANoFkdAxXcJ2ECeVnV9lChoBmgJaA9DCLyzdtuFzVhAlIaUUpRoFU3oA2gWR0DFfH+e6I3zdX2UKGgGaAloD0MI/FQVGoiqXUCUhpRSlGgVTegDaBZHQMWB8ZtNzsB1fZQoaAZoCWgPQwiDaRg+Ih9WQJSGlFKUaBVN6ANoFkdAxYdfiF0xM3V9lChoBmgJaA9DCDykGCDR5ClAlIaUUpRoFU3oA2gWR0DFjNpGrjo7dX2UKGgGaAloD0MI9G+X/bpmV0CUhpRSlGgVTegDaBZHQMWSR6gVXV91fZQoaAZoCWgPQwjvyi4YXIMhQJSGlFKUaBVN6ANoFkdAxZe6xu89OnV9lChoBmgJaA9DCOXv3lFj1lZAlIaUUpRoFU3oA2gWR0DFnSlSS/0vdX2UKGgGaAloD0MIxEMYP407VkCUhpRSlGgVTegDaBZHQMWiljfvWpZ1fZQoaAZoCWgPQwgYlj/fFsJDQJSGlFKUaBVN6ANoFkdAxagB5Qgs9XV9lChoBmgJaA9DCC/E6o8wcFZAlIaUUpRoFU3oA2gWR0DFrXQD5j6OdX2UKGgGaAloD0MI1qcck8W1SkCUhpRSlGgVTegDaBZHQMWy3qq4pc51fZQoaAZoCWgPQwjsNNJSeTNXQJSGlFKUaBVN6ANoFkdAxbhNZ1V5r3V9lChoBmgJaA9DCEd0z7pGSVdAlIaUUpRoFU3oA2gWR0DFvcSvmozfdX2UKGgGaAloD0MI4gSm07pPSkCUhpRSlGgVTegDaBZHQMXDM3yqdYp1fZQoaAZoCWgPQwgLDFnd6v5UQJSGlFKUaBVN6ANoFkdAxcip/ffoBHV9lChoBmgJaA9DCAn9TL1ua1VAlIaUUpRoFU3oA2gWR0DFzh6qABkqdWUu"
|
99 |
+
},
|
100 |
+
"ep_success_buffer": {
|
101 |
+
":type:": "<class 'collections.deque'>",
|
102 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
103 |
+
},
|
104 |
+
"_n_updates": 1000000,
|
105 |
+
"buffer_size": 1,
|
106 |
+
"batch_size": 64,
|
107 |
+
"learning_starts": 100,
|
108 |
+
"tau": 0.005,
|
109 |
+
"gamma": 0.99,
|
110 |
+
"gradient_steps": -1,
|
111 |
+
"optimize_memory_usage": false,
|
112 |
+
"replay_buffer_class": {
|
113 |
+
":type:": "<class 'abc.ABCMeta'>",
|
114 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
115 |
+
"__module__": "stable_baselines3.common.buffers",
|
116 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
117 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x15db96dd0>",
|
118 |
+
"add": "<function ReplayBuffer.add at 0x15db96e60>",
|
119 |
+
"sample": "<function ReplayBuffer.sample at 0x15db96ef0>",
|
120 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x15db96f80>",
|
121 |
+
"__abstractmethods__": "frozenset()",
|
122 |
+
"_abc_impl": "<_abc._abc_data object at 0x15db39700>"
|
123 |
+
},
|
124 |
+
"replay_buffer_kwargs": {},
|
125 |
+
"train_freq": {
|
126 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
127 |
+
":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
128 |
+
},
|
129 |
+
"use_sde_at_warmup": false,
|
130 |
+
"policy_delay": 1,
|
131 |
+
"target_noise_clip": 0.0,
|
132 |
+
"target_policy_noise": 0.1,
|
133 |
+
"actor_batch_norm_stats": [],
|
134 |
+
"critic_batch_norm_stats": [],
|
135 |
+
"actor_batch_norm_stats_target": [],
|
136 |
+
"critic_batch_norm_stats_target": []
|
137 |
+
}
|
ddpg-FishSwimDMC-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c14fc564d98aa0b190a5e7c0de522ea494d14b803e27f0b8786dac166c6e199
|
3 |
+
size 1618077
|
ddpg-FishSwimDMC-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ddpg-FishSwimDMC-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: macOS-13.0.1-arm64-arm-64bit Darwin Kernel Version 22.1.0: Sun Oct 9 20:14:30 PDT 2022; root:xnu-8792.41.9~2/RELEASE_ARM64_T8103
|
2 |
+
- Python: 3.10.9
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f161a14dd58de1a403ff13064f9eb8a19b45aad34514f318e76d856db588d3ce
|
3 |
+
size 111307
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 67.17730250000001, "std_reward": 28.185263075851246, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T08:58:12.647016"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:952ac7f08eda51dd4195bd74ce5c03c676a40c3f1d1e919f56a55f48d0748d76
|
3 |
+
size 42109
|