--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: whisper-small-af-ZA results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: af_za split: train+validation args: af_za metrics: - name: Wer type: wer value: 0.36644093303235514 --- # whisper-small-af-ZA This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the google/fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.5728 - Wer: 0.3664 - Wer Ortho: 0.3943 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 5 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Ortho | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:| | 0.7731 | 1.45 | 100 | 0.7280 | 0.3740 | 0.3863 | | 0.2103 | 2.9 | 200 | 0.5116 | 0.3661 | 0.3859 | | 0.0633 | 4.35 | 300 | 0.4967 | 0.2810 | 0.3008 | | 0.0249 | 5.8 | 400 | 0.5003 | 0.3299 | 0.3477 | | 0.0143 | 7.25 | 500 | 0.5191 | 0.3510 | 0.3660 | | 0.0053 | 8.7 | 600 | 0.5149 | 0.3070 | 0.3221 | | 0.0035 | 10.14 | 700 | 0.5345 | 0.3266 | 0.3443 | | 0.0027 | 11.59 | 800 | 0.5339 | 0.3175 | 0.3344 | | 0.0026 | 13.04 | 900 | 0.5435 | 0.3134 | 0.3328 | | 0.0037 | 14.49 | 1000 | 0.5346 | 0.2506 | 0.2714 | | 0.0045 | 15.94 | 1100 | 0.5438 | 0.3220 | 0.3389 | | 0.0028 | 17.39 | 1200 | 0.5588 | 0.2551 | 0.2740 | | 0.0036 | 18.84 | 1300 | 0.5466 | 0.2728 | 0.2702 | | 0.0035 | 20.29 | 1400 | 0.5364 | 0.3119 | 0.3332 | | 0.0056 | 21.74 | 1500 | 0.5608 | 0.2506 | 0.2721 | | 0.0037 | 23.19 | 1600 | 0.5443 | 0.2833 | 0.3027 | | 0.0035 | 24.64 | 1700 | 0.5466 | 0.3631 | 0.3866 | | 0.0024 | 26.09 | 1800 | 0.5628 | 0.3198 | 0.3416 | | 0.0036 | 27.54 | 1900 | 0.5495 | 0.2946 | 0.3122 | | 0.0016 | 28.99 | 2000 | 0.5728 | 0.3664 | 0.3943 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1